📄 truss2d.c
字号:
/***************************************/
/* program truss2d */
/* t.r.chandrupatla and a.d.belegundu */
/***************************************/
#include <stdio.h>
#include <math.h>
main()
{
FILE *fptr1, *fptr2;
int n,i,j,k,m,i1,i2,ii,jj,m1,nmin,nmax,nrt,nct,it,jt;
int nr,nc,j1,j2,k1,k2;
char dummy[81], title[81], file1[81], file2[81];
int ne,nn,nq,nm,nd,nl,nen,ndn,ndim,npr,nbw,nmpc;
int *noc, *nu, *mat, *mpc;
float *x, *area, *pm, *u, *tempr, *s, *f, *beta;
float c, al, e, tld, cnst, reaction, stress, x21, y21;
float se[4][4], tl[4], sn, cs, ee0, el, eal;
/*-------------------------------------------------------*/
printf("\n");
puts("Input file name < dr:fn.ext >: ");
gets(file1);
puts("Output file name < dr:fn.ext >: ");
gets(file2);
fptr1 = fopen(file1, "r");
fgets(dummy,80,fptr1);
fgets(title,80,fptr1);
fgets(dummy,80,fptr1);
fscanf(fptr1,"%d %d %d %d %d %d\n", &nn, &ne, &nm, &ndim, &nen, &ndn);
fgets(dummy, 80, fptr1);
fscanf(fptr1,"%d %d %d %d %d\n", &nd, &nl, &nmpc);
npr = 2; /* Material Properties E, Alpha
/* ----- memory allocation ----- */
x = (float *) calloc(nn*ndim, sizeof(float));
noc = (int *) calloc(ne*nen, sizeof(int));
u = (float *) calloc(nd, sizeof(float));
nu = (int *) calloc(nd, sizeof(int));
mat = (int *) calloc(ne,sizeof(int));
area = (float *) calloc(ne, sizeof(float));
f = (float *) calloc(nn*ndn, sizeof(float));
tempr = (float *) calloc(ne, sizeof(float));
pm = (float *) calloc(nm*npr, sizeof(float));
mpc = (int *) calloc(2*nmpc, sizeof(int));
beta = (float *) calloc(3*nmpc, sizeof(float));
/* ----- total dof is nq ----- */
nq = ndn * nn;
/* =============== read data ==================== */
/* ----- coordinates ----- */
fgets(dummy,80,fptr1);
for (i = 0; i < nn; i++){
fscanf(fptr1, "%d", &n);
for (j = 0; j < ndim; j++){
fscanf(fptr1, "%f\n", &c);
x[ndim*(n-1)+j] = c;
}
}
/* ----- connectivity, material, thickness, temp-change ----- */
fgets(dummy,80,fptr1);
for (i = 0; i < ne; i++) {
fscanf(fptr1,"%d", &n);
for (j = 0; j < nen; j++) {
fscanf(fptr1,"%d", &k);
noc[(n-1)*nen+j]=k;
}
fscanf(fptr1,"%d", &k);
mat[n-1] = k;
fscanf(fptr1,"%f\n",&c);
area[n-1] = c;
fscanf(fptr1,"%f\n",&c);
tempr[n-1] = c;
}
/* ----- displacement bc ----- */
fgets(dummy,80,fptr1);
for (i = 0; i < nd; i++) {
fscanf(fptr1, "%d %f\n", &k, &c);
nu[i] = k;
u[i] = c;
}
/* ----- component loads ----- */
fgets(dummy,80,fptr1);
for (i = 0; i < nl; i++) {
fscanf(fptr1, "%d %f\n", &k, &c);
f[k-1] = c;
}
/* ----- material properties ----- */
fgets(dummy,80,fptr1);
for (i = 0; i < nm; i++){
fscanf(fptr1, "%d", &k);
for (j = 0; j < npr; j++) {
fscanf(fptr1, "%f\n", &c);
pm[(k-1)*npr+j] = c;
}
}
/* ----- multipoint constraints ----- */
if (nmpc > 0)
{ fgets(dummy,80,fptr1);
for(j=0;j<nmpc;j++){
fscanf(fptr1,"%f",&c);
beta[3*j]=c;
fscanf(fptr1,"%d",&k);
mpc[2*j]=k;
fscanf(fptr1,"%f",&c);
beta[3*j+1]=c;
fscanf(fptr1,"%d",&k);
mpc[2*j+1]=k;
fscanf(fptr1,"%f",&c);
beta[3*j+2]=c;
}
}
fclose (fptr1);
/* ----- bandwidth nbw from connectivity noc() and mpc ----- */
nbw = 0;
for (i = 0; i < ne; i++) {
n = ndn * (abs(noc[nen*i] - noc[nen*i+1]) + 1);
if (nbw < n)
nbw = n;
}
for (i = 0; i < nmpc; i++) {
n = abs(mpc[2*i] - mpc[2*i+1]) + 1;
if (nbw < n)
nbw = n;
}
printf ("the bandwidth is %d\n", nbw);
/* ----- allocate memory for stiffness ----- */
s = (float *) calloc(nq*nbw, sizeof(float));
/* ----- global stiffness matrix -----*/
for (n = 0; n < ne; n++) {
printf("forming stiffness matrix of element %d\n", n+1);
/* --- element stiffness --- */
i1 = noc[nen*n] - 1;
i2 = noc[nen*n+1] - 1;
m = mat[n] - 1;
x21 = x[ndim*i2] - x[ndim*i1];
y21 = x[ndim*i2+1] - x[ndim*i1+1];
el = sqrt((double) (x21 * x21 + y21 * y21));
eal = pm[npr*m] * area[n] / el;
cs = x21 / el;
sn = y21 / el;
/* ----------- element stiffness matrix se() ----------- */
se[0][0] = cs * cs * eal;
se[0][1] = cs * sn * eal;
se[0][2] = -cs * cs * eal;
se[0][3] = -cs * sn * eal;
se[1][0] = se[0][1];
se[1][1] = sn * sn * eal;
se[1][2] = -cs * sn * eal;
se[1][3] = -sn * sn * eal;
se[2][0] = se[0][2];
se[2][1] = se[1][2];
se[2][2] = cs * cs * eal;
se[2][3] = cs * sn * eal;
se[3][0] = se[0][3];
se[3][1] = se[1][3];
se[3][2] = se[2][3];
se[3][3] = sn * sn * eal;
/* --- temperature load vector --- */
ee0 = pm[npr*m+1] * tempr[n] * pm[npr*m] * area[n];
tl[0] = -ee0 * cs;
tl[1] = -ee0 * sn;
tl[2] = ee0 * cs;
tl[3] = ee0 * sn;
printf (".... placing in global locations\n");
for (ii = 0; ii < nen; ii++) {
nrt = ndn * (noc[nen*n + ii] - 1);
for (it = 0; it < ndn; it++) {
nr = nrt + it;
i = ndn * ii + it;
for (jj = 0; jj < nen; jj++) {
nct = ndn * (noc[nen*n+jj] - 1);
for (jt = 0; jt < ndn; jt++) {
j = ndn * jj + jt;
nc = nct + jt - nr;
if (nc >= 0)
s[nbw*nr+nc] = s[nbw*nr+nc] + se[i][j];
}
}
f[nr] = f[nr] + tl[i];
}
}
}
/* ----- decide penalty parameter cnst ----- */
cnst = 0.;
for (i = 0; i < nq; i++) {
if (cnst < s[i*nbw])
cnst = s[i*nbw];
}
cnst = cnst * 10000.;
/* ----- modify for displacement boundary conditions ----- */
for (i = 0; i < nd; i++) {
k = nu[i];
s[(k-1)*nbw] = s[(k-1)*nbw] + cnst;
f[k-1] = f[k-1] + cnst * u[i];
}
/* ----- modify for multipoint constraints ----- */
for (i = 0; i < nmpc; i++){
i1 = mpc[2*i]-1;
i2 = mpc[2*i+1]-1;
s[i1*nbw] = s[i1*nbw] + cnst*beta[3*i]*beta[3*i];
s[i2*nbw] = s[i2*nbw] + cnst*beta[3*i+1]*beta[3*i+1];
n=i1;
if (n > i2)
n = i2;
m = abs(i2-i1);
s[n*nbw+m] = s[n*nbw+m]+cnst*beta[3*i]*beta[3*i+1];
f[i1] = f[i1] + cnst*beta[3*i]*beta[3*i+2];
f[i2] = f[i2] + cnst*beta[3*i+1]*beta[3*i+2];
}
/* ----- solution of equations using band solver ----- */
bansol(s,f,nq,nbw);
/* ----- printing displacements ----- */
fptr1 = fopen(file2, "w");
printf("\n%s\n", title);
fprintf(fptr1, "\n%s\n", title);
fprintf(fptr1, "bandwidth = %d\n",nbw);
fprintf(fptr1, "node# x-displ y-displ\n");
printf ("node# x-displ y-displ\n");
for (i = 0; i < nn; i++) {
printf(" %4d %11.4e %11.4e\n",i+1,f[2*i],f[2*i+1]);
fprintf(fptr1," %4d %11.4e %11.4e\n",i+1,f[2*i],f[2*i+1]);
}
/* ----- reaction calculation ----- */
printf("node# reaction\n");
fprintf(fptr1, "node# reaction\n");
for (i = 0; i < nd; i++) {
k = nu[i];
reaction = cnst * (u[i] - f[k-1]);
printf(" %4d %11.4e\n", k, reaction);
fprintf(fptr1, " %4d %11.4e\n", k, reaction);
}
/* ----- stress calculations ----- */
printf("elem# stress\n");
fprintf(fptr1, "elem# stress\n");
for (i = 0; i < ne; i++) {
i1 = noc[nen*i] - 1;
i2 = noc[nen*i+1] - 1;
m = mat[i] - 1;
x21 = x[ndim*i2] - x[ndim*i1];
y21 = x[ndim*i2+1] - x[ndim*i1+1];
el = sqrt((double) (x21 * x21 + y21 * y21));
cs = x21 / el;
sn = y21 / el;
j1 = 2 * i1;
j2 = j1 + 1;
k1 = 2 * i2;
k2 = k1 + 1;
c = (f[k1] - f[j1]) * cs + (f[k2] - f[j2]) * sn;
stress = pm[npr*m] * (c / el - pm[npr*m+1] * tempr[i]);
printf(" %4d %11.4e\n", i+1, stress);
fprintf(fptr1, " %4d %11.4e\n", i, stress);
}
fclose(fptr1);
printf( "complete results are in file %s\n", file2);
return(0);
}
/* ----- band solver ----- */
bansol(s,f,nq,nbw)
int nq, nbw;
float *s, *f;
{
int n1,k,nk,i,i1,j,j1,kk;
float c1;
/* ----- band solver ----- */
n1 = nq - 1;
/* --- forward elimination --- */
for (k = 1; k <= n1; k++) {
nk = nq - k + 1;
if (nk > nbw)
nk = nbw;
for (i = 2; i <= nk; i++) {
c1 = s[nbw*(k-1)+i-1] / s[nbw*(k-1)];
i1 = k + i - 1;
for (j = i; j <= nk; j++) {
j1 = j - i + 1;
s[nbw*(i1-1)+j1-1] = s[nbw*(i1-1)+j1-1] - c1 * s[nbw*(k-1)+j-1];
}
f[i1-1] = f[i1-1] - c1 * f[k-1];
}
}
/* --- back-substitution --- */
f[nq-1] = f[nq-1] / s[nbw*(nq-1)];
for (kk = 1; kk <= n1;kk++) {
k = nq - kk;
c1 = 1 / s[nbw*(k-1)];
f[k-1] = c1 * f[k-1];
nk = nq - k + 1;
if (nk > nbw)
nk = nbw;
for (j = 2; j <= nk; j++) {
f[k-1] = f[k-1] - c1 * s[nbw*(k-1)+j-1] * f[k + j - 2];
}
}
return(0);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -