📄 readme.inversion
字号:
Extra files: located in ../Cxzcs/Demo6/inversion.dirgetcosines.f -- A fortran program that computes the exact specular reflection angle, or more precisely, their cosines.Makefile -- makefile for getcosines.fNote on computing the speeds:The formula for the acoustic reflection coefficient with specularangle theta is: R = ( cos(theta) - Sqrt[(c_below/c_above)^2 - sin^2(theta) ) / ( cos(theta) + Sqrt[(c_below/c_above)^2 - sin^2(theta) )which yields: c_below = c_above / Sqrt[1 - 4 R cos^2(theta)/(1 + R)^2]Now we just need to get the requisite data from the binary filesproduced by the Inversion shell in this directory. This would bea little easier in practice with SU, but here we can manage nicelywith just the basic CWP tools since we know the location of thereflectors, etc.As you will see, the results are far more accurate than could beobtained in practice--we have created an extremely favorable exampleto avoid a number of distracting side issues. More on this followingthe discussion of our example.We can get the first layer cosine from the binary file cos1:od -f <cos1 0000000 8.2037008e-01 8.2036996e-01 8.2036990e-01 8.2036990e-010000020 8.1902778e-01 8.1902766e-01 8.1902784e-01 8.1902778e-010000040 8.1902784e-01 8.1682408e-01 8.1682420e-01 8.1682414e-010000060 8.1682414e-01 8.1682390e-01 8.1700748e-01 8.1700754e-010000100 8.1700772e-01 8.1700766e-01 8.1700772e-01 8.1747168e-010000120 8.1747168e-01 8.1747162e-01 8.1747162e-01 8.1747156e-010000140 8.1747156e-01 8.1747150e-01 8.1747162e-01 8.1747162e-010000160 8.1747162e-01 8.1747162e-01 8.1747162e-01 8.1747162e-010000200 8.1747162e-01 8.1747156e-01 8.1747156e-01 8.1747150e-010000220 8.1747162e-01 8.1747162e-01 8.1747162e-01 8.1679565e-010000240 8.1750453e-01 8.1750453e-01 8.1750453e-01 8.1750453e-010000260 8.1714147e-01 8.1919879e-01 8.1919879e-01 8.1919879e-010000300 8.1919879e-01 8.2034475e-01 8.1876642e-01 8.1876642e-010000320 8.1876642e-01 8.1876642e-01 8.2174629e-01 8.2198858e-010000340 8.2198858e-01 8.2198858e-01 8.2198858e-01 8.1957781e-010000360So the first layer cosine is .817 (which we can also get accuratelyenough from the xgraph produced by the demo).We can get the second layer cosine from the binary file cos2:od -f <cos1 0000000 9.0705210e-01 9.0705228e-01 9.0705222e-01 9.0705228e-010000020 9.0619093e-01 9.0619105e-01 9.0619105e-01 9.0619105e-010000040 9.0619111e-01 9.0606230e-01 9.0606225e-01 9.0606219e-010000060 9.0606225e-01 9.0606219e-01 9.0548080e-01 9.0548080e-010000100 9.0548104e-01 9.0548086e-01 9.0548098e-01 9.0578628e-010000120 9.0578634e-01 9.0578616e-01 9.0578640e-01 9.0578610e-010000140 9.0592480e-01 9.0611410e-01 9.0611434e-01 9.0611398e-010000160 9.0611428e-01 9.0578210e-01 9.0600073e-01 9.0600061e-010000200 9.0600073e-01 9.0600061e-01 9.0546435e-01 9.0567309e-010000220 9.0567327e-01 9.0567309e-01 9.0567327e-01 9.0605825e-010000240 9.0544575e-01 9.0544564e-01 9.0544575e-01 9.0544564e-010000260 9.0633726e-01 9.0613437e-01 9.0613449e-01 9.0613437e-010000300 9.0613449e-01 9.0704882e-01 9.0663737e-01 9.0663725e-010000320 9.0663737e-01 9.0663725e-01 9.0718222e-01 9.0708506e-010000340 9.0708518e-01 9.0708506e-01 9.0708518e-01 9.0643215e-010000360So the second layer cosine is .906 (which we can also get accuratelyenough from the xgraph produced by the demo).The file "reflect" has the reflection coefficients, we can use theCWP program subset to look at the first layer for the middle 5 traces:subset <reflect n1=301 n2=80 if1s=60 n1s=1 if2s=38 n2s=5 |od -f >rc10000000 1.3710551e-01 1.3710549e-01 1.3710551e-01 1.3710549e-010000020 1.3710551e-010000024Thus, the reflection coefficient for the first layer is about .137,similarly looking at the second layer for the middle 5 traces:subset <reflect n1=301 n2=80 if1s=100 n1s=1 if2s=38 n2s=5 |od -f >rc20000000 9.3112931e-02 9.3112946e-02 9.2245363e-02 9.3191706e-020000020 9.3191691e-020000024So the second layer reflection coefficient is about .093.The values, R = .137, cos(theta) = .817, c_above = 5000, yield theestimate: c_below = 5905 (layer 1)compared with the true value, 6000, for an error of 1.6%.The values, R = .093, cos(theta) = .906, c_above = 6000, yield thetheoretical estimate: c_below = 6954 (layer 2)compared with the true value, 7000, for an error of 0.7%. However,in a real example, we would take c_above as the estimate obtainedfor the first layer, namely c_above = 5905, which gives the estimate: c_below = 6843 (layer 2)compared with the true value, 7000, for an error of 2.2%.A note about real life:As remarked earlier, this example is extremely favorable. With 2horizontal layers, we could force the interfaces onto grid points,thus guaranteeing that the peak reflections fell were seen withoutthe need for sinc interpolation. Perhaps, more importantly, withthis simple geometry, the interpolations done to speed up the inversiondo not significantly degrade the results. In practice one might wellneed to re-invert in some small windows with less or no interpolationto get accurate reflection coefficient data for parameter estimation.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -