⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fftpack.f

📁 linux环境下fortran语言开发
💻 F
📖 第 1 页 / 共 2 页
字号:
	    t5i      = t1i+t2i	    t6i      = sq5o4*(t1i-t2i)	    z0r      = zr(i0+i)	    t7r      = z0r-qrtr*t5r	    xr(j0+j) = z0r+t5r	    t8r      = t7r+t6r	    t9r      = t7r-t6r	    z0i      = zi(i0+i)	    t7i      = z0i-qrtr*t5i	    xi(j0+j) = z0i+t5i	    t8i      = t7i+t6i	    t9i      = t7i-t6i	    t10r     = sin72*t3r+sin36*t4r	    t11r     = sin36*t3r-sin72*t4r	    t10i     = sin72*t3i+sin36*t4i	    t11i     = sin36*t3i-sin72*t4i	    x1r      = t8r-t10i	    x4r      = t8r+t10i	    x1i      = t8i+t10r	    x4i      = t8i-t10r	    x2r      = t9r-t11i	    x3r      = t9r+t11i	    x2i      = t9i+t11r	    x3i      = t9i-t11r            xr(j1+j) = c1*x1r - s1*x1i            xi(j1+j) = s1*x1r + c1*x1i            xr(j2+j) = c2*x2r - s2*x2i            xi(j2+j) = s2*x2r + c2*x2i            xr(j3+j) = c3*x3r - s3*x3i            xi(j3+j) = s3*x3r + c3*x3i            xr(j4+j) = c4*x4r - s4*x4i            xi(j4+j) = s4*x4r + c4*x4i	    i = i+one	    j = j+one 150     continue         j = j + jump 160  continue      return         ***     Now code for fac = 6.** 170  do 180 l = one, li         t1r      = zr(i2+i)+zr(i4+i)	 t3r      = sin60*(zr(i2+i)-zr(i4+i))	 t1i      = zi(i2+i)+zi(i4+i)	 t3i      = sin60*(zi(i2+i)-zi(i4+i))	 t2r      = zr(i0+i)-half*t1r	 t4r      = zr(i0+i)+t1r	 t2i      = zi(i0+i)-half*t1i	 t4i      = zi(i0+i)+t1i	 t5r      = t2r-t3i	 t6r      = t2r+t3i	 t5i      = t2i+t3r	 t6i      = t2i-t3r	 t1r      = zr(i5+i)+zr(i1+i)	 t3r      = sin60*(zr(i5+i)-zr(i1+i))	 t1i      = zi(i5+i)+zi(i1+i)	 t3i      = sin60*(zi(i5+i)-zi(i1+i))	 t2r      = zr(i3+i)-half*t1r	 t7r      = zr(i3+i)+t1r	 t2i      = zi(i3+i)-half*t1i	 t7i      = zi(i3+i)+t1i	 t8r      = t2r-t3i	 t9r      = t2r+t3i	 t8i      = t2i+t3r	 t9i      = t2i-t3r	 xr(j0+j) = t4r+t7r	 xr(j3+j) = t4r-t7r	 xi(j0+j) = t4i+t7i	 xi(j3+j) = t4i-t7i	 xr(j4+j) = t5r+t8r	 xr(j1+j) = t5r-t8r	 xi(j4+j) = t5i+t8i	 xi(j1+j) = t5i-t8i	 xr(j2+j) = t6r+t9r	 xr(j5+j) = t6r-t9r	 xi(j2+j) = t6i+t9i	 xi(j5+j) = t6i-t9i	 i = i+one	 j = j+one 180  continue      j = j + jump      do 200 k = li, m-li, li         s1 = cs(k)         c1 = cc(k)         kk = k+k         s2 = cs(kk)         c2 = cc(kk)         kk = kk+k         s3 = cs(kk)         c3 = cc(kk)         kk = kk+k         s4 = cs(kk)         c4 = cc(kk)         kk = kk+k         s5 = cs(kk)         c5 = cc(kk)         do 190 l = one, li            t1r      = zr(i2+i)+zr(i4+i)	    t3r      = sin60*(zr(i2+i)-zr(i4+i))	    t1i      = zi(i2+i)+zi(i4+i)	    t3i      = sin60*(zi(i2+i)-zi(i4+i))	    t2r      = zr(i0+i)-half*t1r	    t4r      = zr(i0+i)+t1r	    t2i      = zi(i0+i)-half*t1i	    t4i      = zi(i0+i)+t1i	    t5r      = t2r-t3i	    t6r      = t2r+t3i	    t5i      = t2i+t3r	    t6i      = t2i-t3r	    t1r      = zr(i5+i)+zr(i1+i)	    t3r      = sin60*(zr(i5+i)-zr(i1+i))	    t1i      = zi(i5+i)+zi(i1+i)	    t3i      = sin60*(zi(i5+i)-zi(i1+i))	    t2r      = zr(i3+i)-half*t1r	    t7r      = zr(i3+i)+t1r	    t2i      = zi(i3+i)-half*t1i	    t7i      = zi(i3+i)+t1i	    t8r      = t2r-t3i	    t9r      = t2r+t3i	    t8i      = t2i+t3r	    t9i      = t2i-t3r	    xr(j0+j) = t4r+t7r	    x3r      = t4r-t7r	    xi(j0+j) = t4i+t7i	    x3i      = t4i-t7i	    x4r      = t5r+t8r	    x1r      = t5r-t8r	    x4i      = t5i+t8i	    x1i      = t5i-t8i	    x2r      = t6r+t9r	    x5r      = t6r-t9r	    x2i      = t6i+t9i	    x5i      = t6i-t9i            xr(j1+j) = c1*x1r - s1*x1i            xi(j1+j) = s1*x1r + c1*x1i            xr(j2+j) = c2*x2r - s2*x2i            xi(j2+j) = s2*x2r + c2*x2i            xr(j3+j) = c3*x3r - s3*x3i            xi(j3+j) = s3*x3r + c3*x3i            xr(j4+j) = c4*x4r - s4*x4i            xi(j4+j) = s4*x4r + c4*x4i            xr(j5+j) = c5*x5r - s5*x5i            xi(j5+j) = s5*x5r + c5*x5i	    i = i+one	    j = j+one 190     continue         j = j + jump 200  continue      return      end*************************************************************************                                                                      ** FFTTAB - make fft tables                                             **                                                                      ** Parameters:                                                          **    N		 - the length of the transform                         **    CC()	 - where to put cosines                                **    CS()	 - where to put sines                                  **                                                                      *************************************************************************      subroutine ffttab(n,cc,cs)      integer n      real cc(0:*), cs(0:*)*** Local variables:*    I		 - counter*    CCOS()	 - holds computed cosine*    CSIN()	 - holds computed sine*    DCC	 - holds cosine of delta angle*    DCS	 - holds sine of delta angle*    CCTEMP	 - temporary*    CSTEMP	 - temporary*    DOMEGA	 - delta angle*    ZERO, FONE, ONE, IZERO, TWOPI - constants**      integer izero, one      parameter (izero = 0, one = 1)            double precision zero, fone, twopi      parameter (zero = 0.0D0, fone = 1.0D0,      :           twopi = 6.283185307179586476925287D0)*** A note. Since we are using a trig identity to compute the cosines and* sines, we had better use double precision to reduce errors.**      double precision ccos,csin,dcc,dcs,domega,cctemp,cstemp      integer i***     Code begins.**      ccos = fone      csin = zero      domega = twopi/real(n)      dcc = dcos(domega)      dcs = dsin(domega)            do 10 i = izero, n - one         cc(i) = ccos         cs(i) = csin         cctemp = ccos*dcc - csin*dcs         cstemp = ccos*dcs + csin*dCC         ccos = cctemp         csin = cstemp  10  continue      return      end************************************************************************                                                                     ** FFTFAC - find least "expensive" number which factors as a           **          product of 2, 3, 4, 5, and 6 bigger than a given           **          number, and return factors                                 **                                                                     ** Parameters:                                                         **    N		 - the number given                                   **    NEWN	 - the number produced                                **    NFAC	 - the number of factors of newn                      **    FAC()	 - holds factors of NEWN, passed to FFT               **                                                                     ************************************************************************      subroutine fftfac(n,newn,nfac,fac)      integer n,newn,nfac,fac(0:*)*** Local variables:*    M		 - number under consideration for NEWN*    MM		 - for calculations on m*    ADDS, MULTS - store operation counts*    FAC2()	 - hold factors temporarily*    NFAC2	 - temporary nfac*    MAXM	 -  the biggest m can get*    COST1, COST2 - cost of fft in terms of floating multiplies*                   and adds, cost1 contains local minimum*    NEGONE, IZERO, ONE, TWO, THREE, FOUR, FIVE, SIX - constants*    BIGINT	 - a big integer, machine dependent*    LOOKSZ	 - how far ahead we can look*             ***if you are planning to do large (n>4000) transforms,*                set looksz to 200 or bigger*****      integer negone, izero, one, two, three, four,     :        five, six, bigint, looksz      parameter (negone = -1,     :           izero = 0,     :           one = 1,     :           two = 2,     :           three = 3,     :           four = 4,     :           five = 5,     :           six = 6,     :           bigint = 2**30,     :           looksz = 500)      integer m, mm, maxm, k, i, li, cost1, cost2, adds, mults,     :        nfac2, fac2(0:20)     ***     Code begins.**      cost1 = bigint      m = n      maxm = n + looksz  10  mm = m      li = one      adds = izero      mults = izero      nfac2 = izero      k = m / six  20  if (mod(mm,six) .eq. izero) then         fac2(nfac2) = six         nfac2 = nfac2 + one         adds = adds + k*36 + (k-li)*10         mults = mults + k*8 + (k-li)*20         li = li*six         mm = mm / six         go to 20      endif      k = m / five  30  if (mod(mm,five) .eq. izero) then         fac2(nfac2) = five         nfac2 = nfac2 + one         adds = adds + k*32 + (k-li)*8         mults = mults + k*12 + (k-li)*16         li = li*five         mm = mm / five         go to 30      endif      k = m / four  40  if (mod(mm,four) .eq. izero) then         fac2(nfac2) = four         nfac2 = nfac2 + one         adds = adds + k*16 + (k-li)*6         mults = mults + (k-li)*12         li = li*four         mm = mm / four         go to 40      endif      k = m / three  50  if (mod(mm,three) .eq. izero) then         fac2(nfac2) = three         nfac2 = nfac2 + one         adds = adds + k*12 + (k-li)*4         mults = mults + k*4 + (k-li)*8         li = li*three         mm = mm / three         go to 50      endif      k = m / two      if (mod(mm,two) .eq. izero) then         fac2(nfac2) = two         nfac2 = nfac2 + one         adds = adds + k*4 + (k-li)*2         mults = mults + (k-li)*4         mm = mm / two      endif***     Check for factorable M.**               if (mm .ne. one) then         m = m + one         go to 10      endif***     Calculate cost, the three is "machine dependent", use*     (machine multiply time)/(machine add time) instead.**      cost2 = adds + three*mults      ***     If cost lower, store as possibility, and keep looking.**      if (cost2 .lt. cost1) then         cost1 = cost2         do 60 i = izero, nfac2 - one            fac(i) = fac2(i)  60     continue         newn = m         nfac = nfac2      endif***     Ready to stop looking?**      if (m .lt. maxm) then         m = m + one         go to 10      endif***     All done.**      return      end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -