⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fftpack.f

📁 linux环境下fortran语言开发
💻 F
📖 第 1 页 / 共 2 页
字号:
* Copyright (c) Colorado School of Mines, 2007.* All rights reserved.*** Center for Wave Phenomena: * $Revision: 1.2 $ $Date: 87/07/28 16:55:19 $* $Source: /src/general/Fftpack/RCS/fftpack.f,v $**************************************************************************                                                                     ** A self-sorting mixed-radix Fast Fourier Transform package           **                                                                     **                      written by                                     **                                                                     **           Brian Sumner, Center For Wave Phenomena                   **                                                                     **                                                                     ** Copyright 1987 by Brian Sumner  All rights reserved                 **                                                                     ************************************************************************************************************************************************                                                                     ** FFT - compute Fast Fourier Transforms                               **                                                                     ** Parameters:                                                         **    XR(), XI()	 - data to transform                                  **    YR(), YI()	 - work area, this algorithm is not "in place"        **    N		 - the length of the transform                        **    FACS()	 - a list of factors of N, in {2,3,4,5,6}             **    NFAC	 - the number of factors of N                         **    CC()	 - precomputed table of cosines                       **    CS()	 - precomputed table of sines                         **                                                                     ************************************************************************      subroutine fft(xr,xi,yr,yi,n,facs,nfac,cc,cs)      real xr(0:*),xi(0:*),yr(0:*),yi(0:*),cc(0:*),cs(0:*)      integer n,facs(0:*),nfac*** Local variables:*    LI		 - accumulate product of factors*    J		 - index variable*    FAC	 - factor under consideration*    IZERO, ONE	 - constants**      integer izero, one      parameter (izero = 0, one = 1)            integer li, j, fac***     Code begins.**       li = one      j = izero        10  fac = facs(j)      call fftpas(xr,xi,yr,yi,n,fac,li,cc,cs)      j = j + one      if (j .eq. nfac) then         do 20 j = izero, n - one            xr(j) = yr(j)            xi(j) = yi(j)  20     continue         return      endif      li = li * fac      fac = facs(j)      call fftpas(yr,yi,xr,xi,n,fac,li,cc,cs)      j = j + one      if (j .eq. nfac) return      li = li * fac      go to 10            end************************************************************************                                                                     ** FFTPAS - compute one pass of FFT corresponding to factor FAC        **                                                                     ** Parameters:                                                         **    ZR(), ZI()	 - real and imaginary parts of data to act on         **    XR(), XI()	 - place to put result                                **    N		 - the length of the transform                        **    FAC	 - the current factor of n under consideration        **    LI		 - the product of all factors so far                  **    CC()	 - precomputed cosines                                **    CS()	 - precomputed sines                                  **                                                                     ************************************************************************      subroutine fftpas(zr,zi,xr,xi,n,fac,li,cc,cs)      real zr(0:*),zi(0:*),xr(0:*),xi(0:*),cc(0:*),cs(0:*)      integer n,fac,li*** Local variables:*    M		 - gap size in z*    JUMP	 - spacing in x*    K		 - gap in omega*    KK		 - counter for k*    L		 - loop counter*    I0, I1, I2, I3, I4, I5*		- indices in z*    J0, J1, J2, J3, J4, J5*		- indices in x*    Z0R, Z0I .. Z5R, Z5I*       	 - real and imaginary parts of small z vector to*		   transform*    X1R, X1I .. X5R, X5I*		- real and imaginary parts of transformed vector*    T1R, T1I .. T11R, T11I*		- real and imaginary parts of temporaries*    C1 .. C5	 - hold cosines*    S1 .. S5	 - hold sines*    IZERO, ONE, SIN60, HALF, SQ5O4, QRTR, SIN72, SIN36 - constants***      integer izero, one      parameter (izero = 0, one = 1)            real sin60, half, sq5o4, qrtr, sin72, sin36      parameter (sin60 = 0.866025404,     :           half = 0.5,     :           sq5o4 = 0.559016994,     :           qrtr = 0.25,     :           sin72 = 0.951056516,     :           sin36 = 0.587785252)      integer i, j, m, jump, k, l, i0, i1, i2, i3, i4, i5, j0, j1,     :        j2, j3, j4, j5, kk      real z0r, z0i, x1r, x1i, x2r, x2i, x3r, x3i, x4r, x4i, x5r,     :     x5i, t1r, t1i, t2r, t2i, t3r, t3i, t4r, t4i, t5r, t5i,     :     t6r, t6i, t7r, t7i, t8r, t8i, t9r, t9i, t10r, t10i, t11r,     :     t11i, c1, c2, c3, c4, c5, s1, s2, s3, s4, s5***     Code begins. first compute base indices in z and x.**      i = izero      j =  izero      m = n / fac      jump = (fac - one) * li      i0 = izero      j0 = izero      i1 = m      j1 = li      if (fac .eq. 2) go to 10      i2 = i1 + m      j2 = j1 + li      if (fac .eq. 3) go to 50      i3 = i2 + m      j3 = j2 + li      if (fac .eq. 4) go to 90      i4 = i3 + m      j4 = j3 + li      if (fac .eq. 5) go to 130      i5 = i4 + m      j5 = j4 + li      go to 170***     Now we have the code for each factor. Each has the same*     structure. Loop for k = 0, i.e. all the complex multiplications*     are by 1. Then loop over all the other k values.*****     Here is code for fac = 2**  10  do 20 l = one, li	 xr(j1+j) = zr(i0+i)-zr(i1+i)	 xr(j0+j) = zr(i0+i)+zr(i1+i)	 xi(j1+j) = zi(i0+i)-zi(i1+i)	 xi(j0+j) = zi(i0+i)+zi(i1+i)	 i = i+one	 j = j+one  20  continue      j = j + jump      do 40 k = li, m-li, li         s1 = cs(k)         c1 = cc(k)         do 30 l = one, li      	    x1r      = zr(i0+i)-zr(i1+i)      	    xr(j0+j) = zr(i0+i)+zr(i1+i)      	    x1i      = zi(i0+i)-zi(i1+i)      	    xi(j0+j) = zi(i0+i)+zi(i1+i)	    xr(j1+j) = c1*x1r-s1*x1i	    xi(j1+j) = s1*x1r+c1*x1i	    i = i+one	    j = j+one  30     continue         j = j + jump  40  continue      return***     Here is code for fac = 3.**  50  do 60 l = one, li         t1r      = zr(i1+i)+zr(i2+i)         t3r      = sin60*(zr(i1+i)-zr(i2+i))         t1i      = zi(i1+i)+zi(i2+i)         t3i      = sin60*(zi(i1+i)-zi(i2+i))         t2r      = zr(i0+i)-half*t1r         xr(j0+j) = zr(i0+i)+t1r         t2i      = zi(i0+i)-half*t1i         xi(j0+j) = zi(i0+i)+t1i         xr(j1+j) = t2r-t3i         xr(j2+j) = t2r+t3i         xi(j1+j) = t2i+t3r         xi(j2+j) = t2i-t3r	 i = i+one	 j = j+one  60  continue      j = j + jump      do 80 k = li, m-li, li         s1 = cs(k)         c1 = cc(k)         kk = k+k         s2 = cs(kk)         c2 = cc(kk)         do 70 l = one, li            t1r      = zr(i1+i)+zr(i2+i)            t3r      = sin60*(zr(i1+i)-zr(i2+i))            t1i      = zi(i1+i)+zi(i2+i)            t3i      = sin60*(zi(i1+i)-zi(i2+i))            t2r      = zr(i0+i)-half*t1r            xr(j0+j) = zr(i0+i)+t1r            t2i      = zi(i0+i)-half*t1i            xi(j0+j) = zi(i0+i)+t1i            x1r      = t2r-t3i            x2r      = t2r+t3i            x1i      = t2i+t3r            x2i      = t2i-t3r	    xr(j1+j) = c1*x1r-s1*x1i	    xi(j1+j) = s1*x1r+c1*x1i	    xr(j2+j) = c2*x2r-s2*x2i	    xi(j2+j) = s2*x2r+c2*x2i	    i = i+one	    j = j+one  70     continue         j = j + jump  80  continue      return***     Here is code for fac = 4.**  90  do 100 l = one, li         t1r      = zr(i0+i)+zr(i2+i)	 t3r      = zr(i0+i)-zr(i2+i)	 t1i      = zi(i0+i)+zi(i2+i)	 t3i      = zi(i0+i)-zi(i2+i)	 t2r      = zr(i1+i)+zr(i3+i)	 t4r      = zr(i1+i)-zr(i3+i)	 t2i      = zi(i1+i)+zi(i3+i)	 t4i      = zi(i1+i)-zi(i3+i)	 xr(j0+j) = t1r+t2r	 xr(j2+j) = t1r-t2r	 xi(j0+j) = t1i+t2i	 xi(j2+j) = t1i-t2i	 xr(j1+j) = t3r-t4i	 xr(j3+j) = t3r+t4i	 xi(j1+j) = t3i+t4r	 xi(j3+j) = t3i-t4r	 i = i+one	 j = j+one 100  continue      j = j + jump      do 120 k = li, m-li, li         s1 = cs(k)         c1 = cc(k)         kk = k+k         s2 = cs(kk)         c2 = cc(kk)         kk = kk+k         s3 = cs(kk)         c3 = cc(kk)         do 110 l = one, li            t1r      = zr(i0+i)+zr(i2+i)   	    t3r      = zr(i0+i)-zr(i2+i)            t1i      = zi(i0+i)+zi(i2+i)	    t3i      = zi(i0+i)-zi(i2+i)	    t2r      = zr(i1+i)+zr(i3+i)	    t4r      = zr(i1+i)-zr(i3+i)	    t2i      = zi(i1+i)+zi(i3+i)	    t4i      = zi(i1+i)-zi(i3+i)	    xr(j0+j) = t1r+t2r	    x2r      = t1r-t2r	    xi(j0+j) = t1i+t2i	    x2i      = t1i-t2i	    x1r      = t3r-t4i	    x3r      = t3r+t4i	    x1i      = t3i+t4r	    x3i      = t3i-t4r            xr(j1+j) = c1*x1r - s1*x1i            xi(j1+j) = s1*x1r + c1*x1i            xr(j2+j) = c2*x2r - s2*x2i            xi(j2+j) = s2*x2r + c2*x2i            xr(j3+j) = c3*x3r - s3*x3i            xi(j3+j) = s3*x3r + c3*x3i	    i = i+one	    j = j+one 110     continue         j = j + jump 120  continue      return***     Code for fac = 5.** 130  do 140 l = one, li         t1r      = zr(i1+i)+zr(i4+i)	 t3r      = zr(i1+i)-zr(i4+i)	 t1i      = zi(i1+i)+zi(i4+i)	 t3i      = zi(i1+i)-zi(i4+i)	 t2r      = zr(i2+i)+zr(i3+i)	 t4r      = zr(i2+i)-zr(i3+i)	 t2i      = zi(i2+i)+zi(i3+i)	 t4i      = zi(i2+i)-zi(i3+i)	 t5r      = t1r+t2r	 t6r      = sq5o4*(t1r-t2r)	 t5i      = t1i+t2i	 t6i      = sq5o4*(t1i-t2i)	 z0r      = zr(i0+i)	 t7r      = z0r-qrtr*t5r	 xr(j0+j) = z0r+t5r	 t8r      = t7r+t6r	 t9r      = t7r-t6r	 z0i      = zi(i0+i)	 t7i      = z0i-qrtr*t5i	 xi(j0+j) = z0i+t5i	 t8i      = t7i+t6i	 t9i      = t7i-t6i	 t10r     = sin72*t3r+sin36*t4r	 t11r     = sin36*t3r-sin72*t4r	 t10i     = sin72*t3i+sin36*t4i	 t11i     = sin36*t3i-sin72*t4i	 xr(j1+j) = t8r-t10i	 xr(j4+j) = t8r+t10i	 xi(j1+j) = t8i+t10r	 xi(j4+j) = t8i-t10r	 xr(j2+j) = t9r-t11i	 xr(j3+j) = t9r+t11i	 xi(j2+j) = t9i+t11r	 xi(j3+j) = t9i-t11r	 i = i+one	 j = j+one 140  continue      j = j + jump      do 160 k = li, m-li, li         s1 = cs(k)         c1 = cc(k)         kk = k+k         s2 = cs(kk)         c2 = cc(kk)         kk = kk+k         s3 = cs(kk)         c3 = cc(kk)         kk = kk+k         s4 = cs(kk)         c4 = cc(kk)         do 150 l = one, li            t1r      = zr(i1+i)+zr(i4+i)	    t3r      = zr(i1+i)-zr(i4+i)	    t1i      = zi(i1+i)+zi(i4+i)	    t3i      = zi(i1+i)-zi(i4+i)	    t2r      = zr(i2+i)+zr(i3+i)	    t4r      = zr(i2+i)-zr(i3+i)	    t2i      = zi(i2+i)+zi(i3+i)	    t4i      = zi(i2+i)-zi(i3+i)	    t5r      = t1r+t2r	    t6r      = sq5o4*(t1r-t2r)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -