⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trisubs.f

📁 linux环境下利用fortran语言开发
💻 F
📖 第 1 页 / 共 5 页
字号:
                return        endif        t0 = t        t10 = t1        t20 = t2        t30 = t3        t40 = t4        do20 i=1,3                x0(i) = x(i)                x10(i) = x1(i)                x20(i) = x2(i)                x30(i) = x3(i)                x40(i) = x4(i)                p0(i) = p(i)                p10(i) = p1(i)                p20(i) = p2(i)                p30(i) = p3(i)                p40(i) = p4(i)20         continue      10      continue      call ctracr(p0,p10,p20,p30,p40,x0,x10,x20,x30,x40,t0,t10,t20,     &   t30,t40,j0,amp10,amp20,interface(ipath,nsegment(ipath)-1),     &   interface(ipath,nsegment(ipath)),mode(ipath,nsegment(ipath)),     &   x,x1,x2,x3,x4,t,t1,t2,t3,t4,j,amp1,amp2)      if(trace .EQ. 1) then        xp = x(1)+xs-xmin	yp = x(2)+ys-ymin        zp = x(3)        write(stdout,*) xp,yp,zp      endif      call cendray(amp1,amp2,p0,mode(ipath,nsegment(ipath)),disp,error)      return      end      subroutine croskin(p0,inc,scat,smode,p,error)      real p0(3), p(3)      integer inc, scat, smode, error**   This routine continues the ray parameters through a boundary**   INPUT VARIABLES:**       p0(3)   incident ray slowness*       inc     incident layer index*       scat    scattering layer index*       smode   scattered wave type: 1 for SP, 2 for QP, 3 for QS**   OUTPUT VARIABLES:**       p(3)    scattered ray slowness*       error   0 for no error. 1 if postcritical scattering occurs.**   GLOBAL VARIABLES:**       block "model"   geometric and elastic model parameters.**   EXTERNAL ROUTINES:**       scatslow        real scattering slowness finder*      integer nlayer, triso(100)      real param(900), geom(0:99)      common /model/ param, geom, nlayer, triso      real elasti(6), elasts(6), axisi(3), axiss(3), normal(3)      integer i,ii, is, which(2)*   initializes some useful variables      error = 0      ii = (inc-1)*9      is = (scat-1)*9*   load in proper parameters      do10 i=1,6        elasti(i) = param(ii+i)        elasts(i) = param(is+i)10      continue      do20 i=1,3        axisi(i) = param(ii+i+6)        axiss(i) = param(is+i+6)20      continue      which(1) = smode      normal(1) = 0.      normal(2) = 0.*   normal unit vector must be pointing towards incident medium      if(inc .LT. scat) then        normal(3) = -1.        which(2) = 2      else if(inc .GT. scat) then        normal(3) = 1.        which(2) = 2      else if(p0(3) .GE. 0.) then        normal(3) = -1.        which(2) = 1      else        normal(3) = 1.        which(2) = 1      endif*   compute the scattered slowness      call scatslow(p0,normal,axiss,which,elasts,p,error)      return      end      subroutine cscatslow(pinc,iscat,normal,axis,elast,     &                     pscat1,pscat2,pscat3,error)      real pinc(3), normal(3), axis(3), elast(6)      complex pscat1(3), pscat2(3), pscat3(3)      integer error**   computes the complex scattering slowness of the given mode.**   INPUT VARIABLES:*   *       pinc(3)         incident slowness (real)*       iscat           0 for reflection, 1 for transmission*       normal(3)       normal unit vector to interface*                       pointing towards incident medium.*       axis(3)         anisotropy direction in scattering medium*       elast(6)        array of elastic coefficients in scattering*                       medium: A, C, N, L, F, rho**   OUTPUT VARIABLES:**       pscat1(3)       scattered slowness SP mode (complex)*       pscat2(3)       scattered slowness QP mode (complex)*       pscat3(3)       scattered slowness QS mode (complex)*       error           0 if algorithm converged*                       1 if root finding algorithm did not converge*                       2 if QP and QS roots could not be separated*                       3 if triplication occured**   EXTERNAL ROUTINES:**       roots           root finder*       slowness        real slowness evaluator*      real t(3), ptan, ptan2, vtan(3)      complex del, del1, del2, z1, z2, z3, z4, poly(5), pnorm      integer iscat, sign, isol, ip, is, i, ireal      complex pa2, pr2, alpha, beta, zp1, zs1, zp2, zs2, z(4), zz      real AL, CL, LAF, ca, dot1, dot2, p1(3), p2(3), w1(3), w2(3)      real A, C, N, L, F, rho, dot, pinc1(3), pinc2(3)      real pinc3(3), na, ta, na1, ta1, na2, ta2, c2, c1, c0      error = 0*   transfers data to more explicit variables      A = elast(1)      C = elast(2)      N = elast(3)      L = elast(4)      F = elast(5)      rho = elast(6)*   computes tangential slowness and tangent direction      dot = 0.e0      do10 i=1,3        dot = dot + pinc(i)*normal(i)10      continue      ptan2 = 0.e0      do20 i=1,3        vtan(i) = pinc(i) - dot*normal(i)        ptan2 = ptan2 + vtan(i)*vtan(i)20      continue      dot = pinc(1)*pinc(1)+pinc(2)*pinc(2)+pinc(3)*pinc(3)           ptan = sqrt(ptan2)*       gets rid of trivial case (normal incidence)      if(ptan2/dot .EQ. 0.e0) then        if(iscat .EQ. 0) then                sign = 1        else                sign = -1        endif        do40 i=1,3                pinc1(i) = sign*normal(i)                pinc2(i) = sign*normal(i)                pinc3(i) = sign*normal(i)40         continue        call slowness(pinc1,axis,1,elast)        call slowness(pinc2,axis,2,elast)        call slowness(pinc3,axis,3,elast)        do50 i=1,3                pscat1(i) = cmplx(pinc1(i),0.e0)                pscat2(i) = cmplx(pinc2(i),0.e0)                pscat3(i) = cmplx(pinc3(i),0.e0)50         continue        return      endif      do30 i=1,3        t(i) = vtan(i)/ptan30      continue*   computes some usefull quantities for later use      na = 0.e0      do60 i=1,3        na = na + normal(i)*axis(i)60      continue      ta = 0.e0      do70 i=1,3        ta = ta + t(i)*axis(i)70      continue      na2 = na*na      ta2 = ta*ta      na1 = 1.e0 - na2      ta1 = 1.e0 - ta2*   SP case (solved analytically)        c2 = L*na2 + N*na1        c1 = 2.e0*ptan*ta*na*(L-N)        c0 = ptan2*(L*ta2+N*ta1)-rho        del = csqrt(cmplx(c1*c1-4.e0*c2*c0,0.e0))        z1 = (-c1+del)/c2/2.e0        z2 = (-c1-del)/c2/2.e0*       determines appropriate solution        ca = cabs(z1)        if(ca .EQ. 0.0) then                pnorm = cmplx(0.,0.)        else if(abs(aimag(z1))/ca .LE. 1.e-6) then*       scattering is real: test for scattering direction                do888 i=1,3                        p1(i) = vtan(i)+real(z1)*normal(i)                        p2(i) = vtan(i)+real(z2)*normal(i)888                continue                call groupvel(p1,axis,1,elast,w1)                call groupvel(p2,axis,1,elast,w2)                dot1 = 0.e0                dot2 = 0.e0                do999 i=1,3                        dot1 = dot1 + w1(i)*normal(i)                        dot2 = dot2 + w2(i)*normal(i)999                continue                if(iscat .EQ. 0) then                        if(dot1 .GT. 0.e0) then                                pnorm = z1                        else                                pnorm = z2                        endif                else                        if(dot1 .GT. 0.e0) then                                pnorm = z2                        else                                pnorm = z1                        endif                endif        else*       scattering is complex: test for decay                if(iscat .EQ. 0) then                        if(aimag(z1) .GT. 0.e0) then                                pnorm = z1                        else                                pnorm = z2                        endif                else                        if(aimag(z1) .GT. 0.e0) then                                pnorm = z2                        else                                pnorm = z1                        endif                endif        endif      do100 i=1,3        pscat1(i) = vtan(i)+pnorm*normal(i)100      continue*   QP and QS cases (numerical solution)*   computes four scattered slownesses (roots of eikonal determinant)      AL = A*L      CL = C*L      LAF = L*L+A*C-(F+L)*(F+L)      poly(5) = AL*na1*na1 + CL*na2*na2 + LAF*na2*na1      poly(4) = 2.e0*ptan*na*ta*(LAF*(1.e0-2.e0*na2)     &          +2.e0*(CL*na2-AL*na1))      poly(3) = 6.e0*CL*na2*ta2+2.e0*AL*(ta1*na1+2.e0*ta2*na2)      poly(3) = poly(3)+LAF*(na2+ta2-6.e0*na2*ta2)      poly(3) = poly(3)*ptan2-rho*((C+L)*na2+(A+L)*na1)      poly(2) = 2.e0*(CL*ta2-AL*ta1)+LAF*(1.e0-2.e0*ta2)      poly(2) = poly(2)*ptan2+rho*(A-C)      poly(2) = poly(2)*2.e0*ptan*na*ta      poly(1) = CL*ta2*ta2+AL*ta1*ta1+LAF*ta2*ta1      poly(1) = poly(1)*ptan2-rho*((L+C)*ta2+(L+A)*ta1)      poly(1) = poly(1)*ptan2+rho*rho      call roots(poly,z1,z2,z3,z4,isol)      z(1) = z1      z(2) = z2      z(3) = z3      z(4) = z4      if(isol .EQ. 0) then        error = 1        return      endif*   determines number of real roots and reshuffles them *   so that if there are any real roots, they are at the *   first ranks in the array.      ireal = 0      do111 i=1,4        ca = cabs(z(i))        if(ca .EQ. 0.e0) then                ca = 1.e0        endif        if(abs(aimag(z(i)))/ca .LE. 1.e-4) then                zz = z(1)                z(1) = z(i)                z(i) = zz                ireal = ireal + 1                goto 222        endif111      continue222   do333 i=2,4        ca = cabs(z(i))        if(ca .EQ. 0.e0) then                ca = 1.e0        endif        if(abs(aimag(z(i)))/ca .LE. 1.e-4) then                zz = z(2)                z(2) = z(i)                z(i) = zz                ireal = ireal + 1        endif333      continue                if(ireal .EQ. 1 .OR. ireal .EQ. 3) then*   An odd number of real roots, something is wrong.        error = 2        return      endif      if(ireal .EQ. 4) then*   There is real QP and QS scattering      ip = 0      is = 0      pa2 = 2.e0*ptan*na*ta*real(z(1))      pr2 = pa2      pa2 = pa2+ptan2*ta2+real(z(1))*real(z(1))*na2      pr2 = ptan2*ta1-pr2+real(z(1))*real(z(1))*na1      alpha = (A+L)*pr2+(C+L)*pa2      beta = (A-L)*pr2-(C-L)*pa2      beta = beta*beta + 4.e0*pr2*pa2*(L+F)*(L+F)      beta = csqrt(beta)      del1 = cmplx(1.e0,0.e0) - 2.e0*rho/(alpha+beta)      del2 = cmplx(1.e0,0.e0) - 2.e0*rho/(alpha-beta)      if(cabs(del1) .LE. cabs(del2)) then        zp1 = real(z(1))        ip = ip+1                     else        zs1 = real(z(1))        is = is+1      endif      pa2 = 2.e0*ptan*na*ta*real(z(2))      pr2 = pa2      pa2 = pa2+ptan2*ta2+real(z(2))*real(z(2))*na2      pr2 = ptan2*ta1-pr2+real(z(2))*real(z(2))*na1      alpha = (A+L)*pr2+(C+L)*pa2      beta = (A-L)*pr2-(C-L)*pa2      beta = beta*beta + 4.e0*pr2*pa2*(L+F)*(L+F)      beta = csqrt(beta)      del1 = cmplx(1.e0,0.e0) - 2.e0*rho/(alpha+beta)      del2 = cmplx(1.e0,0.e0) - 2.e0*rho/(alpha-beta)      if(cabs(del1) .LE. cabs(del2)) then        if(ip .EQ. 1) then                zp2 = real(z(2))        else                zp1 = real(z(2))        endif        ip = ip+1      else        if(is .EQ. 1) then                zs2 = real(z(2))        else                zs1 = real(z(2))        endif        is = is+1      endif      if(ip .EQ. 2) then        zs1 = real(z(3))        zs2 = real(z(4))      else if(is .EQ. 2) then        zp1 = real(z(3))        zp2 = real(z(4))      else if(is .EQ. 1 .AND. ip .EQ. 1) then        pa2 = 2.e0*ptan*na*ta*real(z(3))        pr2 = pa2        pa2 = pa2+ptan2*ta2+real(z(3))*real(z(3))*na2        pr2 = ptan2*ta1-pr2+real(z(3))*real(z(3))*na1        alpha = (A+L)*pr2+(C+L)*pa2        beta = (A-L)*pr2-(C-L)*pa2        beta = beta*beta + 4.e0*pr2*pa2*(L+F)*(L+F)        beta = csqrt(beta)        del1 = cmplx(1.e0,0.e0) - 2.e0*rho/(alpha+beta)        del2 = cmplx(1.e0,0.e0) - 2.e0*rho/(alpha-beta)        if(cabs(del1) .LE. cabs(del2)) then                zp2 = real(z(3))                ip = ip+1        else                zs2 = real(z(3))                is = is+1        endif        if(ip .EQ. 2) then

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -