📄 234.txt
字号:
2代小波示意程序
2维小波变换经典程序
Daubechies小波基的构造
采用多孔trous算法(undecimated wavelet transform)实现小波变换
平移变换平移法(cycle_spinning)消除gibbs效应
提升法97经典程序
消失矩作用的程序
小波插值与小波构造
小波滤波器构造和消噪程序
小波谱分析mallat算法经典程序
2代小波示意程序
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 此程序用提升法实现第二代小波变换
%% 我用的是非整数阶小波变换
%% 采用时域实现,步骤先列后行
%% 正变换:分裂,预测,更新;
%% 反变换:更新,预测,合并
%% 只做一层(可以多层,而且每层的预测和更新方程不同)
clear;clc;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 1.调原始图像矩阵
load wbarb; % 下载图像
f=X; % 原始图像
% f=[0 0 0 0 0 0 0 0 ;...
% 0 0 0 1 1 0 0 0 ;...
% 0 0 2 4 4 2 0 0 ;...
% 0 1 4 8 8 4 1 0 ;...
% 0 1 4 8 8 4 1 0 ;...
% 0 0 2 4 4 2 0 0 ;...
% 0 0 0 1 1 0 0 0 ;...
% 0 0 0 0 0 0 0 0 ;]; % 原始图像矩阵
N=length(f); % 图像维数
T=N/2; % 子图像维数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%正变换%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 1.列变换
% A.分裂(奇偶分开)
f1=f([1:2:N-1],:); % 奇数
f2=f([2:2:N],:); % 偶数
% f1(:,T+1)=f1(:,1); % 补列
% f2(T+1,:)=f2(1,:); % 补行
% B.预测
for i_hc=1:T;
high_frequency_column(i_hc,:)=f1(i_hc,:)-f2(i_hc,:);
end;
% high_frequency_column(T+1,:)=high_frequency_column(1,:); % 补行
% C.更新
for i_lc=1:T;
low_frequency_column(i_lc,:)=f2(i_lc,:)+1/2*high_frequency_column(i_lc,:);
end;
% D.合并
f_column([1:1:T],:)=low_frequency_column([1:T],:);
f_column([T+1:1:N],:)=high_frequency_column([1:T],:);
figure(1)
colormap(map);
image(f);
figure(2)
colormap(map);
image(f_column);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 2.行变换
% A.分裂(奇偶分开)
f1=f_column(:,[1:2:N-1]); % 奇数
f2=f_column(:,[2:2:N]); % 偶数
% f2(:,T+1)=f2(:,1); % 补行
% B.预测
for i_hr=1:T;
high_frequency_row(:,i_hr)=f1(:,i_hr)-f2(:,i_hr);
end;
% high_frequency_row(:,T+1)=high_frequency_row(:,1); % 补行
% C.更新
for i_lr=1:T;
low_frequency_row(:,i_lr)=f2(:,i_lr)+1/2*high_frequency_row(:,i_lr);
end;
% D.合并
f_row(:,[1:1:T])=low_frequency_row(:,[1:T]);
f_row(:,[T+1:1:N])=high_frequency_row(:,[1:T]);
figure(3)
colormap(map);
image(f_row);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%反变换%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 1.行变换
% A.提取(低频高频分开)
f1=f_row(:,[T+1:1:N]); % 奇数
f2=f_row(:,[1:1:T]); % 偶数
% f2(:,T+1)=f2(:,1); % 补行
% B.更新
for i_lr=1:T;
low_frequency_row(:,i_lr)=f2(:,i_lr)-1/2*f1(:,i_lr);
end;
% C.预测
for i_hr=1:T;
high_frequency_row(:,i_hr)=f1(:,i_hr)+low_frequency_row(:,i_hr);
end;
% high_frequency_row(:,T+1)=high_frequency_row(:,1); % 补行
% D.合并(奇偶分开合并)
f_row(:,[2:2:N])=low_frequency_row(:,[1:T]);
f_row(:,[1:2:N-1])=high_frequency_row(:,[1:T]);
figure(4)
colormap(map);
image(f_row);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 2.列变换
% A.提取(低频高频分开)
f1=f_row([T+1:1:N],:); % 奇数
f2=f_row([1:1:T],:); % 偶数
% f1(:,T+1)=f1(:,1); % 补列
% f2(T+1,:)=f2(1,:); % 补行
% B.更新
for i_lc=1:T;
low_frequency_column(i_lc,:)=f2(i_lc,:)-1/2*f1(i_lc,:);
end;
% C.预测
for i_hc=1:T;
high_frequency_column(i_hc,:)=f1(i_hc,:)+low_frequency_column(i_hc,:);
end;
% high_frequency_column(T+1,:)=high_frequency_column(1,:); % 补行
% D.合并(奇偶分开合并)
f_column([2:2:N],:)=low_frequency_column([1:T],:);
f_column([1:2:N-1],:)=high_frequency_column([1:T],:);
figure(5)
colormap(map);
image(f_column);
2维小波变换经典程序
% FWT_DB.M;
% 此示意程序用DWT实现二维小波变换
% 编程时间2004-4-10,编程人沙威
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear;clc;
T=256; % 图像维数
SUB_T=T/2; % 子图维数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 1.调原始图像矩阵
load wbarb; % 下载图像
f=X; % 原始图像
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 2.进行二维小波分解
l=wfilters('db10','l'); % db10(消失矩为10)低通分解滤波器冲击响应(长度为20)
L=T-length(l);
l_zeros=[l,zeros(1,L)]; % 矩阵行数与输入图像一致,为2的整数幂
h=wfilters('db10','h'); % db10(消失矩为10)高通分解滤波器冲击响应(长度为20)
h_zeros=[h,zeros(1,L)]; % 矩阵行数与输入图像一致,为2的整数幂
for i=1:T; % 列变换
row(1:SUB_T,i)=dyaddown( ifft( fft(l_zeros).*fft(f(:,i)') ) ).'; % 圆周卷积<->FFT
row(SUB_T+1:T,i)=dyaddown( ifft( fft(h_zeros).*fft(f(:,i)') ) ).'; % 圆周卷积<->FFT
end;
for j=1:T; % 行变换
line(j,1:SUB_T)=dyaddown( ifft( fft(l_zeros).*fft(row(j,:)) ) ); % 圆周卷积<->FFT
line(j,SUB_T+1:T)=dyaddown( ifft( fft(h_zeros).*fft(row(j,:)) ) ); % 圆周卷积<->FFT
end;
decompose_pic=line; % 分解矩阵
% 图像分为四块
lt_pic=decompose_pic(1:SUB_T,1:SUB_T); % 在矩阵左上方为低频分量--fi(x)*fi(y)
rt_pic=decompose_pic(1:SUB_T,SUB_T+1:T); % 矩阵右上为--fi(x)*psi(y)
lb_pic=decompose_pic(SUB_T+1:T,1:SUB_T); % 矩阵左下为--psi(x)*fi(y)
rb_pic=decompose_pic(SUB_T+1:T,SUB_T+1:T); % 右下方为高频分量--psi(x)*psi(y)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 3.分解结果显示
figure(1);
colormap(map);
subplot(2,1,1);
image(f); % 原始图像
title('original pic');
subplot(2,1,2);
image(abs(decompose_pic)); % 分解后图像
title('decomposed pic');
figure(2);
colormap(map);
subplot(2,2,1);
image(abs(lt_pic)); % 左上方为低频分量--fi(x)*fi(y)
title('\Phi(x)*\Phi(y)');
subplot(2,2,2);
image(abs(rt_pic)); % 矩阵右上为--fi(x)*psi(y)
title('\Phi(x)*\Psi(y)');
subplot(2,2,3);
image(abs(lb_pic)); % 矩阵左下为--psi(x)*fi(y)
title('\Psi(x)*\Phi(y)');
subplot(2,2,4);
image(abs(rb_pic)); % 右下方为高频分量--psi(x)*psi(y)
title('\Psi(x)*\Psi(y)');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 5.重构源图像及结果显示
% construct_pic=decompose_matrix'*decompose_pic*decompose_matrix;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
l_re=l_zeros(end:-1:1); % 重构低通滤波
l_r=circshift(l_re',1)'; % 位置调整
h_re=h_zeros(end:-1:1); % 重构高通滤波
h_r=circshift(h_re',1)'; % 位置调整
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
top_pic=[lt_pic,rt_pic]; % 图像上半部分
t=0;
for i=1:T; % 行插值低频
if (mod(i,2)==0)
topll(i,:)=top_pic(t,:); % 偶数行保持
else
t=t+1;
topll(i,:)=zeros(1,T); % 奇数行为零
end
end;
for i=1:T; % 列变换
topcl_re(:,i)=ifft( fft(l_r).*fft(topll(:,i)') )'; % 圆周卷积<->FFT
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bottom_pic=[lb_pic,rb_pic]; % 图像下半部分
t=0;
for i=1:T; % 行插值高频
if (mod(i,2)==0)
bottomlh(i,:)=bottom_pic(t,:); % 偶数行保持
else
bottomlh(i,:)=zeros(1,T); % 奇数行为零
t=t+1;
end
end;
for i=1:T; % 列变换
bottomch_re(:,i)=ifft( fft(h_r).*fft(bottomlh(:,i)') )'; % 圆周卷积<->FFT
end;
construct1=bottomch_re+topcl_re; % 列变换重构完毕
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
left_pic=construct1(:,1:SUB_T); % 图像左半部分
t=0;
for i=1:T; % 列插值低频
if (mod(i,2)==0)
leftll(:,i)=left_pic(:,t); % 偶数列保持
else
t=t+1;
leftll(:,i)=zeros(T,1); % 奇数列为零
end
end;
for i=1:T; % 行变换
leftcl_re(i,:)=ifft( fft(l_r).*fft(leftll(i,:)) ); % 圆周卷积<->FFT
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
right_pic=construct1(:,SUB_T+1:T); % 图像右半部分
t=0;
for i=1:T; % 列插值高频
if (mod(i,2)==0)
rightlh(:,i)=right_pic(:,t); % 偶数列保持
else
rightlh(:,i)=zeros(T,1); % 奇数列为零
t=t+1;
end
end;
for i=1:T; % 行变换
rightch_re(i,:)=ifft( fft(h_r).*fft(rightlh(i,:)) ); % 圆周卷积<->FFT
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
construct_pic=rightch_re+leftcl_re; % 重建全部图像
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 结果显示
figure(3);
colormap(map);
subplot(2,1,1);
image(f); % 源图像显示
title('original pic');
subplot(2,1,2);
image(abs(construct_pic)); % 重构源图像显示
title('reconstructed pic');
error=abs(construct_pic-f); % 重构图形与原始图像误值
figure(4);
mesh(error); % 误差三维图像
title('absolute error display');
Daubechies小波基的构造
% 此程序实现构造小波基
% periodic_wavelet.m
function ss=periodic_wavelet;
clear;clc;
% global MOMENT; % 消失矩阶数
% global LEFT_SCALET; % 尺度函数左支撑区间
% global RIGHT_SCALET; % 尺度函数右支撑区间
% global LEFT_BASIS; % 小波基函数左支撑区间
% global RIGHT_BASIS; % 小波基函数右支撑区间
% global MIN_STEP; % 最小离散步长
% global LEVEL; % 计算需要的层数(离散精度)
% global MAX_LEVEL; % 周期小波最大计算层数
[s2,h]=scale_integer;
[test,h]=scalet_stretch(s2,h);
wave_base=wavelet(test,h);
ss=periodic_waveletbasis(wave_base);
function [s2,h]=scale_integer;
% 本函数实现求解小波尺度函数离散整数点的值
% sacle_integer.m
MOMENT=10; % 消失矩阶数
LEFT_SCALET=0; % 尺度函数左支撑区间
RIGHT_SCALET=2*MOMENT-1; % 尺度函数右支撑区间
LEFT_BASIS=1-MOMENT; % 小波基函数左支撑区间
RIGHT_BASIS=MOMENT; % 小波基函数右支撑区间
MIN_STEP=1/512; % 最小离散步长
LEVEL=-log2(MIN_STEP); % 计算需要的层数(离散精度)
MAX_LEVEL=8; % 周期小波最大计算层数
h=wfilters('db10','r'); % 滤波器系数
h=h*sqrt(2); % FI(T)=SQRT(2)*SUM(H(N)*FI(2T-N)) N=0:2*MOMENT-1;
for i=LEFT_SCALET+1:RIGHT_SCALET-1
for j=LEFT_SCALET+1:RIGHT_SCALET-1
k=2*i-j+1;
if (k>=1&k<=RIGHT_SCALET+1)
a(i,j)=h(k); % 矩阵系数矩阵
else
a(i,j)=0;
end
end
end
[s,w]=eig(a); % 求特征向量,解的基
s1=s(:,1);
s2=[0;s1/sum(s1);0]; % 根据条件SUM(FI(T))=1,求解;
% 本函数实现尺度函数经伸缩后的离散值
% scalet_stretch.m
function [s2,h]=scalet_stretch(s2,h);
MOMENT=10; % 消失矩阶数
LEFT_SCALET=0; % 尺度函数左支撑区间
RIGHT_SCALET=2*MOMENT-1; % 尺度函数右支撑区间
LEFT_BASIS=1-MOMENT; % 小波基函数左支撑区间
RIGHT_BASIS=MOMENT; % 小波基函数右支撑区间
MIN_STEP=1/512; % 最小离散步长
LEVEL=-log2(MIN_STEP); % 计算需要的层数(离散精度)
MAX_LEVEL=8; % 周期小波最大计算层数
for j=1:LEVEL % 需要计算到尺度函数的层数
t=0;
for i=1:2:2*length(s2)-3 % 需要计算的离散点取值(0,1,2,3 -> 1/2, 3/2, 5/2)
t=t+1;
fi(t)=0;
for n=LEFT_SCALET:RIGHT_SCALET; % 低通滤波器冲击响应紧支撑判断
if ((i/2^(j-1)-n)>=LEFT_SCALET&(i/2^(j-1)-n)<=RIGHT_SCALET) % 小波尺度函数紧支撑判断
fi(t)=fi(t)+h(n+1)*s2(i-n*2^(j-1)+1); % 反复应用双尺度方程求解
end
end
end
clear s
n1=length(s2);
n2=length(fi);
for i=1:length(s2)+length(fi) % 变换后的矩阵长度
if (mod(i,2)==1)
s(i)=s2((i+1)/2); % 矩阵奇数下标为小波上一层(0,1,2,3)离散值
else
s(i)=fi(i/2); % 矩阵偶数下标为小波下一层(1/2,3/2,5/2)(经过伸缩变换后)的离散值
end
end
s2=s;
end
% 采用双尺度方程求解小波基函数 PSI(T)
% wavelet.m
function wave_base=wavelet(test,h);
MOMENT=10; % 消失矩阶数
LEFT_SCALET=0; % 尺度函数左支撑区间
RIGHT_SCALET=2*MOMENT-1; % 尺度函数右支撑区间
LEFT_BASIS=1-MOMENT; % 小波基函数左支撑区间
RIGHT_BASIS=MOMENT; % 小波基函数右支撑区间
MIN_STEP=1/512; % 最小离散步长
LEVEL=-log2(MIN_STEP); % 计算需要的层数(离散精度)
MAX_LEVEL=8; % 周期小波最大计算层数
i=0;
for t=LEFT_BASIS:MIN_STEP:RIGHT_BASIS; % 小波基支撑长度
s=0;
for n=1-RIGHT_SCALET:1-LEFT_SCALET % g(n)取值范围
if((2*t-n)>=LEFT_SCALET&(2*t-n)<=RIGHT_SCALET) % 尺度函数判断
s=s+h(1-n+1)*(-1)^(n)*test((2*t-n)/MIN_STEP+1); % 计算任意精度的小波基函数值
end
end
i=i+1;
wave_base(i)=s;
end
采用多孔trous算法(undecimated wavelet transform)实现小波变换
clear;clc;
%% 1.生成信号
f=50; % 频率
fs=800; % 采样率
T=128; % 信号长度
n=1:T;
y=sin(2*pi*f*n/fs)+2*exp(-f*n/(4*fs)); % 信号
% y=circshift(y.',3).';
%% 2.正变换
l1=wfilters('db4','l')*sqrt(2)/2; % 参考低通滤波器
l1_zeros=[l1,zeros(1,T-length(l1))]; % 低通滤波器1
h1=wfilters('db4','h')*sqrt(2)/2; % 参考高通滤波器
h1_zeros=[h1,zeros(1,T-length(h1))]; % 高通滤波器1
low1=ifft(fft(y).*fft(l1_zeros)); % 低频分量1
high1=ifft(fft(y).*fft(h1_zeros)); % 高频分量1
l2=dyadup(l1); % 原滤波器插值
l2_zeros=[l2,zeros(1,T-length(l2))]; % 低通滤波器2
h2=dyadup(h1); % 原滤波器插值
h2_zeros=[h2,zeros(1,T-length(h2))]; % 高通滤波器2
low2=ifft(fft(low1).*fft(l2_zeros)); % 低频分量2
high2=ifft(fft(low1).*fft(h2_zeros)); % 高频分量2
%% 3.反变换
lr2=circshift(l2_zeros(end:-1:1).',1).'; % 重构低通滤波器2
hr2=circshift(h2_zeros(end:-1:1).',1).'; % 重构高通滤波器2
lr1=circshift(l1_zeros(end:-1:1).',1).'; % 重构低通滤波器1
hr1=circshift(h1_zeros(end:-1:1).',1).'; % 重构高通滤波器1
lowr=(ifft(fft(low2).*fft(lr2))+ifft(fft(high2).*fft(hr2))); % 重构低频分量1(lowr=low1)
r_s=(ifft(fft(lowr).*fft(lr1))+ifft(fft(high1).*fft(hr1))); % 重构源信号(r_s=y)
%% 4.绘图
figure(1);
plot(y);
title('源信号');
figure(2);
plot(low1,'r');
hold on;
plot(low2,'b');
legend('第一层低频','第二层低频');
figure(3);
plot(high1,'r');
hold on;
plot(high2,'b');
legend('第一层高频','第二层高频');
figure(4);
plot(low1,'r');
hold on;
plot(lowr,'b.');
legend('第一层低频','重构第一层低频');
figure(5);
plot(y,'r');
hold on;
plot(r_s,'b.');
legend('源信号','重构信号');
disp(norm(low1-lowr))
disp(norm(y-r_s))
平移变换平移法(cycle_spinning)消除gibbs效应
clear;
clc;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 1.原始信号
f=50; % 信号频率
fs=800; % 采样频率
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -