📄 draft-ietf-dhc-dhcpv6-28.txt
字号:
Droms (ed.), et al. Expires 30 Apr 2003 [Page v]Internet Draft DHCP for IPv6 (-28) 2 Nov 20021. Introduction and Overview This document describes DHCP for IPv6 (DHCP), a client/server protocol that provides managed configuration of devices. DHCP can provide a device with addresses assigned by a DHCP server and other configuration information, which are carried in options. DHCP can be extended through the definition of new options to carry configuration information not specified in this document. DHCP is the "stateful address autoconfiguration protocol" and the "stateful autoconfiguration protocol" referred to in "IPv6 Stateless Address Autoconfiguration" [21]. The operational models and relevant configuration information for DHCPv4 [1][6] and DHCPv6 are sufficiently different that integration between the two services is not included in this document. If there is sufficient interest and demand, integration can be specified in a document that extends DHCPv6 to carry IPv4 addresses and configuration information. The remainder of this introduction summarizes DHCP, explaining the message exchange mechanisms and example message flows. The message flows in sections 1.2 and 1.3 are intended as illustrations of DHCP operation rather than an exhaustive list of all possible client-server interactions. Sections 17, 18 and 19 explain client and server operation in detail.1.1. Protocols and Addressing Clients and servers exchange DHCP messages using UDP [19]. The client uses a link-local address or addresses determined through other mechanisms for transmitting and receiving DHCP messages. DHCP servers receive messages from clients using a reserved, link-scoped multicast address. A DHCP client transmits most messages to this reserved multicast address, so that the client need not be configured with the address or addresses of DHCP servers. To allow a DHCP client to send a message to a DHCP server that is not attached to the same link, a DHCP relay agent on the client's link will relay messages between the client and server. The operation of the relay agent is transparent to the client and the discussion of message exchanges in the remainder of this section will omit the description of message relaying by relay agents. Once the client has determined the address of a server, it may under some circumstances send messages directly to the server using unicast.Droms (ed.), et al. Expires 30 Apr 2003 [Page 1]Internet Draft DHCP for IPv6 (-28) 2 Nov 20021.2. Client-server Exchanges Involving Two Messages When a DHCP client does not need to have a DHCP server assign it IP addresses, the client can obtain configuration information such as a list of available DNS servers [8] or NTP servers [22] through a single message and reply exchanged with a DHCP server. To obtain configuration information the client first sends an Information-Request message to the All_DHCP_Relay_Agents_and_Servers multicast address. Servers respond with a Reply message containing the configuration information for the client. This message exchange assumes that the client requires only configuration information and does not require the assignment of any IPv6 addresses. When a server has IPv6 addresses and other configuration information committed to a client, the client and server may be able to complete the exchange using only two messages, instead of four messages as described in the next section. In this case, the client sends a Solicit message to the All_DHCP_Relay_Agents_and_Servers requesting the assignment of addresses and other configuration information. This message includes an indication that the client is willing to accept an immediate Reply message from the server. The server that is willing to commit the assignment of addresses to the client immediately responds with a Reply message. The configuration information and the addresses in the Reply message are then immediately available for use by the client. Each address assigned to the client has associated preferred and valid lifetimes specified by the server. To request an extension of the lifetimes assigned to an address, the client sends a Renew message to the server. The server sends a Reply message to the client with the new lifetimes, allowing the client to continue to use the address without interruption.1.3. Client-server Exchanges Involving Four Messages To request the assignment of one or more IPv6 addresses, a client first locates a DHCP server and then requests the assignment of addresses and other configuration information from the server. The client sends a Solicit message to the All_DHCP_Relay_Agents_and_Servers address to find available DHCP servers. Any server that can meet the client's requirements responds with an Advertise message. The client then chooses one of the servers and sends a Request message to the server asking for confirmed assignment of addresses and other configuration information. The server responds with a Reply message that contains the confirmed addresses and configuration. As described in the previous section, the client sends a Renew message to the server to extend the lifetimes associated with itsDroms (ed.), et al. Expires 30 Apr 2003 [Page 2]Internet Draft DHCP for IPv6 (-28) 2 Nov 2002 addresses, allowing the client to continue to use those addresses without interruption.2. Requirements The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be interpreted as described in [3]. This document also makes use of internal conceptual variables to describe protocol behavior and external variables that an implementation must allow system administrators to change. The specific variable names, how their values change, and how their settings influence protocol behavior are provided to demonstrate protocol behavior. An implementation is not required to have them in the exact form described here, so long as its external behavior is consistent with that described in this document.3. Background The IPv6 Specification provides the base architecture and design of IPv6. Related work in IPv6 that would best serve an implementor to study includes the IPv6 Specification [5], the IPv6 Addressing Architecture [9], IPv6 Stateless Address Autoconfiguration [21], IPv6 Neighbor Discovery Processing [17], and Dynamic Updates to DNS [23]. These specifications enable DHCP to build upon the IPv6 work to provide both robust stateful autoconfiguration and autoregistration of DNS Host Names. The IPv6 Addressing Architecture specification [9] defines the address scope that can be used in an IPv6 implementation, and the various configuration architecture guidelines for network designers of the IPv6 address space. Two advantages of IPv6 are that support for multicast is required and nodes can create link-local addresses during initialization. The availability of these features means that a client can use its link-local address and a well-known multicast address to discover and communicate with DHCP servers or relay agents on its link. IPv6 Stateless Address Autoconfiguration [21] specifies procedures by which a node may autoconfigure addresses based on router advertisements [17], and the use of a valid lifetime to support renumbering of addresses on the Internet. In addition the protocol interaction by which a node begins stateless or stateful autoconfiguration is specified. DHCP is one vehicle to perform stateful autoconfiguration. Compatibility with stateless address autoconfiguration is a design requirement of DHCP. IPv6 Neighbor Discovery [17] is the node discovery protocol in IPv6 which replaces and enhances functions of ARP [18]. To understandDroms (ed.), et al. Expires 30 Apr 2003 [Page 3]Internet Draft DHCP for IPv6 (-28) 2 Nov 2002 IPv6 and stateless address autoconfiguration it is strongly recommended that implementors understand IPv6 Neighbor Discovery. Dynamic Updates to DNS [23] is a specification that supports the dynamic update of DNS records for both IPv4 and IPv6. DHCP can use the dynamic updates to DNS to integrate addresses and name space to not only support autoconfiguration, but also autoregistration in IPv6.4. Terminology This sections defines terminology specific to IPv6 and DHCP used in this document.4.1. IPv6 Terminology IPv6 terminology relevant to this specification from the IPv6 Protocol [5], IPv6 Addressing Architecture [9], and IPv6 Stateless Address Autoconfiguration [21] is included below. address An IP layer identifier for an interface or a set of interfaces. host Any node that is not a router. IP Internet Protocol Version 6 (IPv6). The terms IPv4 and IPv6 are used only in contexts where it is necessary to avoid ambiguity. interface A node's attachment to a link. link A communication facility or medium over which nodes can communicate at the link layer, i.e., the layer immediately below IP. Examples are Ethernet (simple or bridged); Token Ring; PPP links, X.25, Frame Relay, or ATM networks; and Internet (or higher) layer "tunnels", such as tunnels over IPv4 or IPv6 itself. link-layer identifier A link-layer identifier for an interface. Examples include IEEE 802 addresses for Ethernet or Token Ring network interfaces, and E.164 addresses for ISDN links. link-local address An IPv6 address having link-only scope, indicated by having the prefix (FE80::/10), that can be used to reachDroms (ed.), et al. Expires 30 Apr 2003 [Page 4]Internet Draft DHCP for IPv6 (-28) 2 Nov 2002 neighboring nodes attached to the same link. Every interface has a link-local address. multicast address An identifier for a set of interfaces (typically belonging to different nodes). A packet sent to a multicast address is delivered to all interfaces identified by that address. neighbor A node attached to the same link. node A device that implements IP. packet An IP header plus payload. prefix The initial bits of an address, or a set of IP addresses that share the same initial bits. prefix length The number of bits in a prefix. router A node that forwards IP packets not explicitly addressed to itself. unicast address An identifier for a single interface. A packet sent to a unicast address is delivered to the interface identified by that address.4.2. DHCP Terminology Terminology specific to DHCP can be found below. appropriate to the link An address is "appropriate to the link"
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -