📄 stdafx.cpp
字号:
// stdafx.cpp : source file that includes just the standard includes
// video2.pch will be the pre-compiled header
// stdafx.obj will contain the pre-compiled type information
#include "stdafx.h"
//给定位置point和大小area,在特定图像*pimage中画矩形
IplImage* rectangle_drawing(IplImage* pimage, CvPoint point, CvSize area)
{
if(point.x > area.width && point.x < pimage->width - area.width && point.y > area.height && point.y < pimage->height - area.height)
{
//using cvLine, more simpler
cvLine(pimage, cvPoint(point.x - area.width, point.y - area.height), cvPoint(point.x + area.width, point.y - area.height), CV_RGB(255, 0, 0), 1, 0);
cvLine(pimage, cvPoint(point.x - area.width, point.y - area.height), cvPoint(point.x - area.width, point.y + area.height), CV_RGB(255, 0, 0), 1, 0);
cvLine(pimage, cvPoint(point.x + area.width, point.y + area.height), cvPoint(point.x + area.width, point.y - area.height), CV_RGB(255, 0, 0), 1, 0);
cvLine(pimage, cvPoint(point.x + area.width, point.y + area.height), cvPoint(point.x - area.width, point.y + area.height), CV_RGB(255, 0, 0), 1, 0);
}
return pimage;
}
//给定图像,返回颜色直方图向量
CvHistogram* hist_calculation(IplImage* pimage, CvHistogram* hist, int histnum, float* histranges)
{
hist = cvCreateHist( 1, &histnum, CV_HIST_ARRAY, &histranges, 1 ); // 创建直方图
cvCalcHist( &pimage, hist, 0, 0 ); // 计算直方图
return hist;
}
//画颜色直方图
IplImage* histogram_drawing(CvHistogram* hist, IplImage* histimage, int histnum)
{
float max_val=0;
cvGetMinMaxHistValue( hist, 0, &max_val, 0, 0 ); // 只找最大值
cvZero( histimage );
int bin_width = histimage->width / histnum; // histnum: 条的个数,则 bin_w 为条的宽度
for( int i = 0; i < histnum; i++ )
{
double val = ( cvGetReal1D(hist->bins,i)*histimage->height/max_val );
CvScalar color = CV_RGB(255,255,0); //(hsv2rgb(i*180.f/histnum);
cvRectangle( histimage, cvPoint(cvRound((double)i*bin_width),histimage->height),
cvPoint((i+1)*bin_width,(int)(histimage->height - val)),color, 1, 8, 0 );
}
return histimage;
}
//从灰度图像中得到想要的一小块图像
IplImage* patchimage_getting(IplImage* pimage, IplImage* dstimage, CvPoint point, CvSize area)
{
int k=0;
//IplImage* dstimage = cvCreateImage(cvSize(2*area.width-1, 2*area.height-1), IPL_DEPTH_8U, 1);
for(int i=point.y-area.height+1;i<=point.y+area.height-1;i++)
for(int j=point.x-area.width+1;j<=point.x+area.width-1;j++)
{
dstimage->imageData[k]=pimage->imageData[i*pimage->width+j];
k++;
}
return dstimage;
}
//计算Bhattacharyya距离
float bhattacharyya(CvHistogram* hist1, CvHistogram* hist2, int histnum)
{
double sumhist1 = 0;
double sumhist2 = 0;
for(int i=0;i<histnum;i++)
{
sumhist1 += cvGetReal1D(hist1->bins,i);
}
for(int i=0;i<histnum;i++)
{
sumhist2 += cvGetReal1D(hist2->bins,i);
}
if(sumhist1==0 || sumhist2==0)
{
std::cout<<"sumhist = 0!!"<<"\n";
return 0;
}
//////////计算difference巴特查里亚距离//////////////
float sum=0;
for(int i=0;i<histnum;i++)
{
sum += (float)sqrt(cvGetReal1D(hist1->bins,i)/sumhist1*cvGetReal1D(hist2->bins,i)/sumhist2);
}
return (1-sum);
}
//欧几里德距离计算
float eujilide(CvMat* Model_WenLi, CvMat* WenLi)
{
float et = 0;
float sum =0;
//std::cout<<"\n\nWenLi\n";
for(int i=0;i<36;i++)
{
//std::cout<<Model_WenLi->data.fl[i]<<" "<<WenLi->data.fl[i]<<"\n";
sum += pow(Model_WenLi->data.fl[i]-WenLi->data.fl[i], 2);
}
et = sqrt(sum);
return et;
}
//权值计算,未进行归一化
void CondProbDens(CvConDensation* CD, float* Measurement, float exptect_dist)
{
float Prob = 1;
float stdev = 1.0/(4*exptect_dist*exptect_dist);
for(int i = 0; i < CD->SamplesNum;i++)
{
Prob =1;
for(int j =0; j < CD->DP;j++)
{
// assume a guaddian prob guassian with given std.dev of.. If too small nothing will associate and you get 0 prob...
Prob*=(float)exp(-stdev * (Measurement[j] - CD->flSamples[i][j])*(Measurement[j]-CD->flSamples[i][j]));
}
CD->flConfidence[i] = Prob;
}
}
void ConDensWeightsCalculation(CvConDensation* CD, float bt, float exptect_dist)
{
float stdev = -1.0/(4*exptect_dist*exptect_dist);
for(int i=0;i<CD->SamplesNum;i++)
{
CD->flConfidence[i]=exp(stdev * bt * bt);
}
}
//重采样
void resampling(CvConDensation* CD, CvMat* noise)
{
int j = 0;
for(int i=0;i<CD->SamplesNum;i++)
{
j = 0;
while(noise->data.fl[i] > CD->flCumulative[j])
{
j++;
}
if(j < CD->SamplesNum)
{
CD->flNewSamples[i][0] = CD->flSamples[j][0];
CD->flNewSamples[i][1] = CD->flSamples[j][1];
}
}
for(int i=0;i<CD->SamplesNum;i++)
{
for(int j=0;j<CD->DP;j++)
{
CD->flSamples[i][j] = CD->flNewSamples[i][j];
}
}
}
//粒子滤波主过程,输出滤波结果--估计位置。
CvPoint PF_result(IplImage* pGrey, CvConDensation* CD, CvPoint state_prediction, CvHistogram* hist, \
CvSize area, int histnum, float* histranges, CvMat* FuzhiMat, CvMat* FangxiangMat, \
CvMat* Model_WenLi, CvMat* WenLi, float exptect_dist, int steps, CvRandState rng)
{
CvPoint prediction_position = cvPoint(0, 0);
float bt=0, et=0;
//float radius = 10;
float sum = 0;
IplImage* patch= cvCreateImage(cvSize(2*area.width-1, 2*area.height-1), IPL_DEPTH_8U, 1);
CvHistogram* particlehist = NULL;
CvMat* noise = cvCreateMat( CD->SamplesNum, 1, CV_32FC1 );
//CvRandState RandS;
//cvRandInit( &RandS, 0, 1, -4, CV_RAND_UNI );
for(int j=0;j<steps;j++)
{
sum = 0;
//权值计算,核心,同时也是观测模型与粒子滤波框架的切入点
for(int i=0;i<CD->SamplesNum;i++)
{
patch = patchimage_getting(pGrey, patch, cvPoint(cvRound(CD->flSamples[i][0]), cvRound(CD->flSamples[i][1])), area);
//根据颜色直方图计算可能性大小
//particlehist = hist_calculation(patch, particlehist, histnum, histranges);
//bt = bhattacharyya(hist, particlehist, histnum);
//CD->flConfidence[i] = exp(-20 * bt);
//根据纹理特征计算可能性大小
grads_calculation(patch, FuzhiMat, FangxiangMat);
wen_li_statistic(FuzhiMat, FangxiangMat, WenLi);
et = eujilide(Model_WenLi, WenLi);
CD->flConfidence[i] = exp(-10 * et);
sum += CD->flConfidence[i];
}
//normalize the weights
CD->flConfidence[0] /= sum;
CD->flCumulative[0] = CD->flConfidence[0];
for(int i=1;i<CD->SamplesNum;i++)
{
CD->flConfidence[i] /= sum;
CD->flCumulative[i] = CD->flCumulative[i-1] + CD->flConfidence[i];
}
//for(int i=0;i<CD->SamplesNum;i++)
//{
// std::cout<<"\n"<<CD->flSamples[i][0]<<" "<<CD->flConfidence[i]<<"\n";
//}
cvRandSetRange(&rng, 0, 1, 0 );
rng.disttype = CV_RAND_UNI;
cvRand(&rng, noise);
resampling(CD, noise);
//update particles
cvRandSetRange(&rng, -10, 10, 0); //(-10, 10)这个范围的设计要根据目标的速度来决定,
//原则就是:保证粒子范围能够覆盖目标下一步可能出现的位置
rng.disttype = CV_RAND_UNI;
for(int i=0;i<CD->DP;i++)
{
cvRand(&rng, noise);
for(int j=0;j<CD->SamplesNum;j++)
{
CD->flSamples[j][i] += noise->data .fl[j];
}
}
}
//prediction
//normalize the weights
float position_x = 0, position_y = 0;
for(int i=0;i<CD->SamplesNum;i++)
{
//CD->flConfidence[i] /= sum;
position_x += CD->flSamples[i][0] / CD->SamplesNum;
position_y += CD->flSamples[i][1] / CD->SamplesNum;
}
prediction_position.x = cvRound(position_x);
prediction_position.y = cvRound(position_y);
cvReleaseImage(&patch);
cvReleaseHist( &particlehist );
cvReleaseMat( &noise);
return prediction_position;
}
//纹理统计
void wen_li_statistic(CvMat* FuzhiMat, CvMat* FangxiangMat, CvMat* WenLi)
{
cvZero(WenLi);
float sum = 0;
for(int i=1;i<FuzhiMat->cols-1;i++)
for(int j=1;j<FuzhiMat->rows-1;j++)
{
WenLi->data.fl[cvFloor((FangxiangMat->data.fl[j*FangxiangMat->cols+i] * 180 / pi + 180 ) / 10)] += \
FuzhiMat->data.fl[j*FuzhiMat->cols+i];
}
for(int i=0;i<36;i++)
{
sum += WenLi->data.fl[i] * WenLi->data.fl[i];
}
sum = sqrt(sum);
for(int i=0;i<36;i++)
{
WenLi->data.fl[i] /= sum;
}
}
////梯度计算
void grads_calculation(IplImage* pImgs, CvMat* FuzhiMat, CvMat* FangxiangMat)
{
float mask_x[9] = { -1, 0, 1, \
-1, 0, 1, \
-1, 0, 1};
float mask_y[9] = { -1, -1, -1, \
0, 0, 0, \
1, 1, 1};
float dx=0,dy=0;
for(int i=1;i<pImgs->width-1;i++)
for(int j=1;j<pImgs->height-1;j++)
{
dx = ((mask_x[2] * pImgs->imageData[(j-1) * pImgs->width + i + 1] + mask_x[0] * pImgs->imageData[(j-1) * pImgs->width + i - 1]) \
+ (mask_x[5] * pImgs->imageData[j * pImgs->width + i + 1] + mask_x[3] * pImgs->imageData[j * pImgs->width + i - 1]) \
+ (mask_x[8] * pImgs->imageData[(j+1) * pImgs->width + i + 1] + mask_x[6] * pImgs->imageData[(j+1) * pImgs->width + i - 1]))/6;
dy = ((mask_y[6] * pImgs->imageData[(j+1) * pImgs->width + i - 1] + mask_y[0] * pImgs->imageData[(j-1) * pImgs->width + i - 1]) \
+ (mask_y[7] * pImgs->imageData[(j+1) * pImgs->width + i] + mask_y[1] * pImgs->imageData[(j-1) * pImgs->width + i]) \
+ (mask_y[8] * pImgs->imageData[(j+1) * pImgs->width + i + 1] + mask_y[2] * pImgs->imageData[(j-1) * pImgs->width + i + 1]))/6;
FuzhiMat->data.fl[j * FuzhiMat->cols + i] = sqrt(dx*dx + dy*dy);
FangxiangMat->data.fl[j * FangxiangMat->cols + i] = atan2(dy, dx);
//std::cout<<FuzhiMat->data.fl[j * FuzhiMat->cols + i]<<" "<<FangxiangMat->data.fl[j * FangxiangMat->cols + i]<<"\n";
}
}
// TODO: reference any additional headers you need in STDAFX.H
// and not in this file
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -