⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 render_flexbox.cpp

📁 最新Nokia手机浏览器全套源代码完美版。
💻 CPP
📖 第 1 页 / 共 4 页
字号:
    initMaxMarginValues();

    if (scrollsOverflow()) {
        // For overflow:scroll blocks, ensure we have both scrollbars in place always.
        if (style()->overflow() == OSCROLL) {
            m_layer->setHasHorizontalScrollbar(true);
            m_layer->setHasVerticalScrollbar(true);
        }

        // Move the scrollbars aside during layout.  The layer will move them back when it
        // does painting or event handling.
        m_layer->moveScrollbarsAside();
    }

    if (isHorizontal())
        layoutHorizontalBox(relayoutChildren);
    else
        layoutVerticalBox(relayoutChildren);
    
    oldHeight = m_height;
    calcHeight();
    if (oldHeight != m_height) {
        relayoutChildren = true;

        // If the block got expanded in size, then increase our overflowheight to match.
        if (m_overflowHeight > m_height)
            m_overflowHeight -= (borderBottom()+paddingBottom());
        if (m_overflowHeight < m_height)
            m_overflowHeight = m_height;
    }

    layoutPositionedObjects( relayoutChildren );

    //kdDebug() << renderName() << " layout width=" << m_width << " height=" << m_height << endl;

    if (!isFloatingOrPositioned() && m_height == 0) {
        // We are a block with no border and padding and a computed height
        // of 0.  The CSS spec states that zero-height blocks collapse their margins
        // together.
        // When blocks are self-collapsing, we just use the top margin values and set the
        // bottom margin max values to 0.  This way we don't factor in the values
        // twice when we collapse with our previous vertically adjacent and
        // following vertically adjacent blocks.
        if (m_maxBottomPosMargin > m_maxTopPosMargin)
            m_maxTopPosMargin = m_maxBottomPosMargin;
        if (m_maxBottomNegMargin > m_maxTopNegMargin)
            m_maxTopNegMargin = m_maxBottomNegMargin;
        m_maxBottomNegMargin = m_maxBottomPosMargin = 0;
    }

    // Always ensure our overflow width is at least as large as our width.
    if (m_overflowWidth < m_width)
        m_overflowWidth = m_width;

    // Update our scrollbars if we're overflow:auto/scroll/hidden now that we know if
    // we overflow or not.
    if (hasOverflowClip())
        m_layer->updateScrollInfoAfterLayout();

    // Repaint with our new bounds if they are different from our old bounds.
    if (checkForRepaint)
        repaintAfterLayoutIfNeeded(oldBounds, oldBounds);
    
    setNeedsLayout(false);
}

void RenderFlexibleBox::layoutHorizontalBox(bool relayoutChildren)
{
    int toAdd = borderBottom() + paddingBottom();
    int yPos = borderTop() + paddingTop();
    int xPos = borderLeft() + paddingLeft();
    bool heightSpecified = false;
    int oldHeight = 0;
    
    unsigned int highestFlexGroup = 0;
    unsigned int lowestFlexGroup = 0;
    bool haveFlex = false;
    int remainingSpace = 0;
    m_overflowHeight = m_height;

    // The first walk over our kids is to find out if we have any flexible children.
    FlexBoxIterator iterator(this);
    RenderObject* child = iterator.next();
    while (child) {
        // Check to see if this child flexes.
        if (!child->isPositioned() && child->style()->boxFlex() > 0.0f) {
            // We always have to lay out flexible objects again, since the flex distribution
            // may have changed, and we need to reallocate space.
            child->setOverrideSize(-1);
            if (!relayoutChildren)
                child->setChildNeedsLayout(true, false);
            haveFlex = true;
            unsigned int flexGroup = child->style()->boxFlexGroup();
            if (lowestFlexGroup == 0)
                lowestFlexGroup = flexGroup;
            if (flexGroup < lowestFlexGroup)
                lowestFlexGroup = flexGroup;
            if (flexGroup > highestFlexGroup)
                highestFlexGroup = flexGroup;
        }
        child = iterator.next();
    }
    
    // We do 2 passes.  The first pass is simply to lay everyone out at
    // their preferred widths.  The second pass handles flexing the children.
    do {
        // Reset our height.
        m_height = yPos;
        m_overflowHeight = m_height;
        xPos = borderLeft() + paddingLeft();
                
        // Our first pass is done without flexing.  We simply lay the children
        // out within the box.  We have to do a layout first in order to determine
        // our box's intrinsic height.
        int maxAscent = 0, maxDescent = 0;
        child = iterator.first();
        while (child) {
            // make sure we relayout children if we need it.
            if (relayoutChildren || (child->isReplaced() && (child->style()->width().isPercent() || child->style()->height().isPercent())))
                child->setChildNeedsLayout(true, false);
            
            if (child->isPositioned()) {
                child = iterator.next();
                continue;
            }
    
            // Compute the child's vertical margins.
            child->calcVerticalMargins();
    
            // Now do the layout.
            child->layoutIfNeeded();
    
            // Update our height and overflow height.
            if (style()->boxAlign() == BBASELINE) {
                int ascent = child->marginTop() + child->getBaselineOfFirstLineBox();
                if (ascent == -1)
                    ascent = child->marginTop() + child->height() + child->marginBottom();
                int descent = (child->marginTop() + child->height() + child->marginBottom()) - ascent;
                
                // Update our maximum ascent.
                maxAscent = kMax(maxAscent, ascent);
                
                // Update our maximum descent.
                maxDescent = kMax(maxDescent, descent);
                
                // Now update our height.
                m_height = kMax(yPos + maxAscent + maxDescent, m_height);
            }
            else
                m_height = kMax(m_height, yPos + child->marginTop() + child->height() + child->marginBottom());

            child = iterator.next();
        }
        m_height += toAdd;

        // Always make sure our overflowheight is at least our height.
        if (m_overflowHeight < m_height)
            m_overflowHeight = m_height;
        
        oldHeight = m_height;
        calcHeight();

        relayoutChildren = false;
        if (oldHeight != m_height) {
            heightSpecified = true;
    
            // If the block got expanded in size, then increase our overflowheight to match.
            if (m_overflowHeight > m_height)
                m_overflowHeight -= (borderBottom() + paddingBottom());
            if (m_overflowHeight < m_height)
                m_overflowHeight = m_height;
        }
        
        // Now that our height is actually known, we can place our boxes.
        m_stretchingChildren = (style()->boxAlign() == BSTRETCH);
        child = iterator.first();
        while (child) {
            if (child->isPositioned()) {
                child->containingBlock()->insertPositionedObject(child);
                if (child->hasStaticX()) {
                    if (style()->direction() == LTR)
                        child->setStaticX(xPos);
                    else child->setStaticX(width() - xPos);
                }
                if (child->hasStaticY())
                    child->setStaticY(yPos);
                child = iterator.next();
                continue;
            }
    
            // We need to see if this child's height has changed, since we make block elements
            // fill the height of a containing box by default.
            // Now do a layout.
            int oldChildHeight = child->height();
            static_cast<RenderBox*>(child)->calcHeight();
            if (oldChildHeight != child->height())
                child->setChildNeedsLayout(true, false);
            child->layoutIfNeeded();
    
            // We can place the child now, using our value of box-align.
            xPos += child->marginLeft();
            int childY = yPos;
            switch (style()->boxAlign()) {
                case BCENTER:
                    childY += child->marginTop() + (contentHeight() - (child->height() + child->marginTop() + child->marginBottom()))/2;
                    break;
                case BBASELINE: {
                    int ascent = child->marginTop() + child->getBaselineOfFirstLineBox();
                    if (ascent == -1)
                        ascent = child->marginTop() + child->height() + child->marginBottom();
                    childY += child->marginTop() + (maxAscent - ascent);
                    break;
                }
                case BEND:
                    childY += contentHeight() - child->marginBottom() - child->height();
                    break;
                default: // BSTART
                    childY += child->marginTop();
                    break;
            }

            placeChild(child, xPos, childY);
            m_overflowHeight = kMax(m_overflowHeight, childY + child->overflowHeight(false));
            
            xPos += child->width() + child->marginRight();
    
            child = iterator.next();
        }

        remainingSpace = borderLeft() + paddingLeft() + contentWidth() - xPos;
        
        m_stretchingChildren = false;
        if (m_flexingChildren)
            haveFlex = false; // We're done.
        else if (haveFlex) {
            // We have some flexible objects.  See if we need to grow/shrink them at all.
            if (!remainingSpace)
                break;

            // Allocate the remaining space among the flexible objects.  If we are trying to
            // grow, then we go from the lowest flex group to the highest flex group.  For shrinking,
            // we go from the highest flex group to the lowest group.
            bool expanding = remainingSpace > 0;
            unsigned int start = expanding ? lowestFlexGroup : highestFlexGroup;
            unsigned int end = expanding? highestFlexGroup : lowestFlexGroup;
            for (unsigned int i = start; i <= end && remainingSpace; i++) {
                // Always start off by assuming the group can get all the remaining space.
                int groupRemainingSpace = remainingSpace;
                do {
                    // Flexing consists of multiple passes, since we have to change ratios every time an object hits its max/min-width
                    // For a given pass, we always start off by computing the totalFlex of all objects that can grow/shrink at all, and
                    // computing the allowed growth before an object hits its min/max width (and thus
                    // forces a totalFlex recomputation).
                    float totalFlex = 0.0f;
                    child = iterator.first();
                    while (child) {
                        if (allowedChildFlex(child, expanding, i))
                            totalFlex += child->style()->boxFlex();
                        child = iterator.next();
                    }
                    child = iterator.first();
                    int spaceAvailableThisPass = groupRemainingSpace;
                    while (child) {
                        int allowedFlex = allowedChildFlex(child, expanding, i);
                        if (allowedFlex) {
                            int projectedFlex = (allowedFlex == INT_MAX) ? allowedFlex : (int)(allowedFlex * (totalFlex / child->style()->boxFlex()));
                            spaceAvailableThisPass = expanding ? kMin(spaceAvailableThisPass, projectedFlex) : kMax(spaceAvailableThisPass, projectedFlex);
                        }
                        child = iterator.next();
                    }

                    // The flex groups may not have any flexible objects this time around. 
                    if (!spaceAvailableThisPass || totalFlex == 0.0f) {
                        // If we just couldn't grow/shrink any more, then it's time to transition to the next flex group.
                        groupRemainingSpace = 0;
                        continue;
                    }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -