📄 sv_kernel.tex
字号:
\documentclass[a4paper,11pt]{article}%\usepackage{amstex}%/*% * File: sv_kernel.tex% * Purpose: Explanation of kernels% *% * Author: Mark O. Stitson% * Created: 00/00/97% * Updated: 29/01/98% *% * $Id: sv_kernel.tex,v 1.9.2.2 1998/02/12 17:21:45 markst Exp $% * % * Copyright (c) 1998 RHBNC London - All rights reserved% * THIS IS PROPRIETARY SOURCE CODE of RHBNC London% */\author{M. O. Stitson}\title{RHBNC SVM Kernels}\begin{document}\parindent=0pt\parskip=7pt\maketitle\section{SV Kernels}This is a list of the kernel functions in the RHUL SV Machine:\begin{itemize}\item 1. The simple dot product:$$K(x,y)=x\cdot y$$\item 2. The simple polynomial kernel:$$K(x,y)=((x\cdot y)+1)^d$$where $d$ is user defined.Taken from \cite{vapnik95}.\item 3. Vovk's real polynomial:$$K(x,y)=\frac{1-(x\cdot y)^d}{1-(x\cdot y)}$$where $d$ is user defined and where $-1<(x\cdot y)<1$.From private communications with V. Vovk.\item 4. Vovk's real infinite polynomial:$$K(x,y)=\frac{1}{1-(x\cdot y)}$$where $-1<(x\cdot y)<1$.From private communications with V. Vovk.\item 5. Radial Basis function:$$\exp(-\gamma |x-y|^2)$$where $\gamma$ is user defined.Taken from \cite{vapnik95}.\item 6. Two layer neural network:$$\tanh(\frac{b(x \cdot y)}{1}-c)$$where $b$ and $c$ are user defined.Taken from \cite{vapnik95}.\item 7. Linear splines with an infinite number of points:For the one-dimensional case:$$1+x_ix_j+x_ix_j\min(x_i,x_j)-\frac{x_i+x_j}{2}(\min(x_ix_j))^2+\frac{(\min(x_i,x_j))^3}{3}$$For the multi-dimensional case $K(x,y)=\prod_{k=1}^{n}K_k(x^k,y^k)$Taken from \cite{vladgolo}.\item 8. Full polynomial kernel:$$\big(\frac{x\cdot y}{a}+b\big)^d$$where $a$, $b$ and $d$ are user defined.From \cite{vapnik95} and generalized.\item 9. Regularized Fourier (weaker mode regularization)For the one-dimensional case:$$\frac{\pi}{2\gamma}\frac{\cosh\frac{\pi-|x_i-x_j|}{\gamma}}{\sinh\frac{\pi}{\gamma}}$$where $0\leq |x_i-x_j| \leq 2\pi$ and $\gamma$ is user defined.For the multi-dimensional case $K(x,y)=\prod_{k=1}^{n}K_k(x^k,y^k)$From \cite{vladgolo} and \cite{vlad98}.\item 10. Semi Local Kernel$$[(x_i\cdot x_j)+1]^d\exp({-||x_i-x_j||^2\sigma^2})$$where $d$ and $\sigma$ are user defined and weight between global andlocal approximation.From private communications with V. Vapnik.\item 11. Regularized Fourier (stronger mode regularization)For the one-dimensional case:$$\frac{1-\gamma^2}{2(1-2\gamma\cos(x_i-x_j)+\gamma^2)}$$where $0\leq |x_i-x_j| \leq 2\pi$ and $\gamma$ is user defined.For the multi-dimensional case $K(x,y)=\prod_{k=1}^{n}K_k(x^k,y^k)$From \cite{vladgolo} and \cite{vlad98}.\item 17. Anova 1$$K(x,y)=(\sum_{k=1}^{n}\exp(-\gamma(x^k-y^k)^2))^{d}$$where the degree $d$ and $\gamma$ are user defined.From private communications with V. Vapnik.\item 18. Generic Kernel 1This is a kernel intended for experiments, just modify the appropriatefunction in kernel\_generic\_1\_c.C. You can use the parameters a\_val,b\_val, c\_val, d\_val and e\_val.\item 19. Generic Kernel 2This is a kernel intended for experiments, just modify the appropriatefunction in kernel\_generic\_2\_c.C. You can use the parameters a\_val,b\_val, c\_val, d\_val and e\_val.\end{itemize}\include{bibliography}\end{document}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -