📄 fdct_usfft.cpp
字号:
/* Copyright (C) 2004 Caltech Written by Lexing Ying*/#include "fdct_usfft.hpp"#include "fdct_usfft_inline.hpp"FDCT_USFFT_NS_BEGIN_NAMESPACE//------------------------------------int fdct_usfft_fftL(int N1, int N2, CpxOffMat& x, CpxOffMat& O);int fdct_usfft_sepscale(int N1, int N2, int nbscales, int ac, CpxOffMat& O, vector<CpxOffMat>& Xhghs);int fdct_usfft_sepangle(double XL1, double XL2, int nbangles, CpxOffMat& Xhgh, vector<CpxOffMat>& msc);int fdct_usfft_ifftS(vector<CpxOffMat>& msc, vector<CpxOffMat>& csc);int fdct_usfft_wavelet(CpxOffMat& Xhgh, vector<CpxOffMat>& csc);int fdct_usfft_1dinterp(DblNumMat& off, DblNumMat& wgt, CpxOffVec& val, CpxNumMat& res, map<int, fftw_plan>& f1map, map<int, fftw_plan>& b1map);//------------------------------------int fdct_usfft( int N1, int N2, int nbscales, int nbangles_coarse, int ac, CpxOffMat& x, vector< vector<CpxOffMat> >& c){ assert(N1==x.m() && N2==x.n()); int F1 = N1/2; int F2 = N2/2; //1. fftL CpxOffMat O(N1, N2, -F1, -F2); fdct_usfft_fftL(N1, N2, x, O); //2. seperate scale vector<CpxOffMat> Xhghs(nbscales); fdct_usfft_sepscale(N1, N2, nbscales, ac, O, Xhghs); //3. work on each scale if(ac==1) { //nbangles vector<int> nbangles(nbscales); nbangles[0] = 1; for(int sc=1; sc<nbscales; sc++) nbangles[sc] = nbangles_coarse * pow2( int(ceil(double(sc-1)/2)) ); //c c.resize(nbscales); for(int sc=0; sc<nbscales; sc++) c[sc].resize( nbangles[sc] ); //finest+mid levels double XL1 = 4.0*N1/3.0; double XL2 = 4.0*N2/3.0; //range for(int sc=nbscales-1; sc>0; sc--) { vector<CpxOffMat> msc(nbangles[sc]); fdct_usfft_sepangle(XL1, XL2, nbangles[sc], Xhghs[sc], msc); fdct_usfft_ifftS(msc, c[sc]); XL1 = XL1/2; XL2 = XL2/2; } //coarest level fdct_usfft_wavelet(Xhghs[0], c[0]); } else { //nbangles vector<int> nbangles(nbscales); nbangles[0] = 1; for(int sc=1; sc<nbscales-1; sc++) nbangles[sc] = nbangles_coarse * pow2( int(ceil(double(sc-1)/2)) ); nbangles[nbscales-1] = 1; //c c.resize(nbscales); for(int sc=0; sc<nbscales; sc++) c[sc].resize( nbangles[sc] ); //finest level fdct_usfft_wavelet(Xhghs[nbscales-1], c[nbscales-1]); //mid levels double XL1 = 2.0*N1/3.0; double XL2 = 2.0*N2/3.0; //range for(int sc=nbscales-2; sc>0; sc--) { vector<CpxOffMat> msc(nbangles[sc]); fdct_usfft_sepangle(XL1, XL2, nbangles[sc], Xhghs[sc], msc); fdct_usfft_ifftS(msc, c[sc]); XL1 = XL1/2; XL2 = XL2/2; } //coarest level fdct_usfft_wavelet(Xhghs[0], c[0]); } return 0;}//--------------------int fdct_usfft_fftL(int N1, int N2, CpxOffMat& x, CpxOffMat& O){ //move zero freq at front int F1 = N1/2; int F2 = N2/2; //1. ifftshift CpxNumMat T(N1, N2); fdct_usfft_ifftshift(N1, N2, F1, F2, x, T); //2. do fft and scale fftwnd_plan p = fftw2d_create_plan(N2, N1, FFTW_FORWARD, FFTW_ESTIMATE | FFTW_IN_PLACE); fftwnd_one(p, (fftw_complex*)T.data(), NULL); fftwnd_destroy_plan(p); double sqrtprod = sqrt(double(N1*N2)); for(int i=0; i<N1; i++) for(int j=0; j<N2; j++) T(i,j) /= sqrtprod; //3. fftshift O.resize(N1, N2, -F1, -F2); fdct_usfft_fftshift(N1, N2, F1, F2, T, O); return 0;}//--------------------int fdct_usfft_sepscale(int N1, int N2, int nbscales, int ac, CpxOffMat& O, vector<CpxOffMat>& Xhghs){ //----------------------------------------------------- //unfold if necessary CpxOffMat X; if(ac==1) { //-------------------------- double XL1 = 4.0*N1/3.0; double XL2 = 4.0*N2/3.0; //range int XS1, XS2; int XF1, XF2; double XR1, XR2; fdct_usfft_rangecompute(XL1, XL2, XS1, XS2, XF1, XF2, XR1, XR2); IntOffVec t1(XS1, -XF1); for(int i=-XF1; i<-XF1+XS1; i++) if( i<-N1/2) t1(i) = i+int(N1); else if(i>=N1/2) t1(i) = i-int(N1); else t1(i) = i; IntOffVec t2(XS2, -XF2); for(int i=-XF2; i<-XF2+XS2; i++) if( i<-N2/2) t2(i) = i+int(N2); else if(i>=N2/2) t2(i) = i-int(N2); else t2(i) = i; X.resize(XS1, XS2, -XF1, -XF2); for(int i=-XF1; i<-XF1+XS1; i++) for(int j=-XF2; j<-XF2+XS2; j++) X(i,j) = O(t1(i), t2(j)); DblOffMat lowpass(XS1,XS2,-XF1,-XF2); fdct_usfft_lowpasscompute(XL1, XL2, lowpass); //compute the low pass filter for(int i=-XF1; i<-XF1+XS1; i++) for(int j=-XF2; j<-XF2+XS2; j++) X(i,j) *= lowpass(i,j); } else { //-------------------------- X = O; } //----------------------------------------------------- //seperate Xhghs.resize(nbscales); double XL1 = 4.0*N1/3.0; double XL2 = 4.0*N2/3.0; //range //int XS1, XS2; int XF1, XF2; double XR1, XR2; fdct_usfft_rangecompute(XL1, XL2, XS1, XS2, XF1, XF2, XR1, XR2); for(int sc=nbscales-1; sc>0; sc--) { double XL1n = XL1/2; double XL2n = XL2/2; int XS1n, XS2n; int XF1n, XF2n; double XR1n, XR2n; fdct_usfft_rangecompute(XL1n, XL2n, XS1n, XS2n, XF1n, XF2n, XR1n, XR2n); //get filters DblOffMat lowpass(XS1n, XS2n, -XF1n, -XF2n); fdct_usfft_lowpasscompute(XL1n, XL2n, lowpass); DblOffMat hghpass(XS1n, XS2n, -XF1n, -XF2n); for(int i=-XF1n; i<-XF1n+XS1n; i++) for(int j=-XF2n; j<-XF2n+XS2n; j++) hghpass(i,j) = sqrt(1-lowpass(i,j)*lowpass(i,j)); //get Xhgh CpxOffMat Xhgh(X); for(int i=-XF1n; i<-XF1n+XS1n; i++) for(int j=-XF2n; j<-XF2n+XS2n; j++) { //Xhgh(i,j).re *= hghpass(i,j); Xhgh(i,j).im *= hghpass(i,j); Xhgh(i,j) *= hghpass(i,j); } CpxOffMat Xlow(XS1n, XS2n, -XF1n, -XF2n); for(int i=-XF1n; i<-XF1n+XS1n; i++) for(int j=-XF2n; j<-XF2n+XS2n; j++) { //Xlow(i,j).re = X(i,j).re * lowpass(i,j); Xlow(i,j).im = X(i,j).im * lowpass(i,j); Xlow(i,j) = X(i,j) * lowpass(i,j); } //set into vector Xhghs[sc] = Xhgh; X = Xlow; XL1 = XL1/2; XL2 = XL2/2; } Xhghs[0] = X; return 0;}//--------------------int fdct_usfft_sepangle(double XL1, double XL2, int nbangles, CpxOffMat& Xhgh, vector<CpxOffMat>& msc){ //int XS1, XS2; int XF1, XF2; double XR1, XR2; fdct_usfft_rangecompute(XL1, XL2, XS1, XS2, XF1, XF2, XR1, XR2); map<int, fftw_plan> f1map; //forward 1d map, IN_PLACE map<int, fftw_plan> b1map; //backward 1d map, IN_PLACE //allocate msc msc.resize(nbangles); int nbquadrants = 4; int nd = nbangles / 4; int wcnt = 0; CpxOffMat Xhghb(Xhgh); double XL1b = XL1; double XL2b = XL2; int qvec[] = {2,1,0,3}; for(int qi=0; qi<nbquadrants; qi++) { int q = qvec[qi]; //rotate data fdct_usfft_rotate_forward(q, XL1b, XL2b, XL1, XL2); XL1 = abs(XL1); XL2 = abs(XL2); fdct_usfft_rotate_forward(q, Xhghb, Xhgh); // sample using USFFT for each line int XS1, XS2; int XF1, XF2; double XR1, XR2; fdct_usfft_rangecompute(XL1, XL2, XS1, XS2, XF1, XF2, XR1, XR2); //double XW1 = XL1/nd; double XW2 = XL2/nd; double xs = XR1/4; double xe = XR1; int xf = int(ceil(xs)); //xn,yn, make them odd int xn = int(ceil(xe-xs)); int yn = 2*int(ceil(XW2))+1; if(xn%2==0) xn++; if(yn%2==0) yn++; int xh = xn/2; int yh = yn/2; //allocate temporary space for tsc vector<CpxOffMat> tsc(nd); for(int w=0; w<nd; w++) tsc[w].resize(xn,yn,-xh,-yh); //gather weighted samples for each wedges for(int xcur=xf; xcur<xe; xcur++) { //for each line DblNumMat ysft(yn, nd); //store shifted positions DblNumMat wsft(yn, nd); //store shifted weights for(int w=0; w<nd; w++) { double ys = -XR2 + (w-0.5)*XW2; double ym = -XR2 + (w+0.5)*XW2; double ye = -XR2 + (w+1.5)*XW2; double s0 = ys/XR1; double s2 = ym/XR1; double s4 = ye/XR1; for(int yid=0; yid<yn; yid++) { double tmp = (yid-yh) + s2*xcur; //shifting operator, double pou; if(tmp<s2*xcur) { //below double l,r; fdct_usfft_window( (tmp/xcur-s0)/(s2-s0), l, r); pou = l; } else { double l,r; fdct_usfft_window( (tmp/xcur-s2)/(s4-s2), l, r); pou = r; } ysft(yid,w) = tmp; wsft(yid,w) = pou; } } //interpolation with weights (usfft or usfft_simple) CpxOffVec val(XS2, -XF2); ////CpxOffVec val(XS2+1, -XF2-1); //value for the current column, the first element is zero for(int i=-XF2; i<-XF2+XS2; i++) val(i) = Xhgh(xcur,i); CpxNumMat res(yn, nd); fdct_usfft_1dinterp(ysft, wsft, val, res, f1map, b1map); //with weights int tmpx = xcur%xn; if(tmpx<-xh) tmpx+=xn; if(tmpx>=-xh+xn) tmpx-=xn; for(int w=0; w<nd; w++) for(int yid=0; yid<yn; yid++) tsc[w](tmpx,yid-yh) = res(yid,w); }//each line //rotate data back into msc for(int w=nd-1; w>=0; w--) { fdct_usfft_rotate_backward(q, tsc[w], msc[wcnt]); wcnt++; } } //for loop for quadrant Xhgh = Xhghb; XL1 = XL1b; XL2 = XL2b; assert(wcnt==nbangles); for(map<int,fftw_plan>::iterator mit=f1map.begin(); mit!=f1map.end(); mit++) { fftw_plan p = (*mit).second; fftw_destroy_plan(p); } for(map<int,fftw_plan>::iterator mit=b1map.begin(); mit!=b1map.end(); mit++) { fftw_plan p = (*mit).second; fftw_destroy_plan(p); } return 0;}//--------------------int fdct_usfft_ifftS(vector<CpxOffMat>& msc, vector<CpxOffMat>& csc){ typedef pair<int,int> intpair; map<intpair, fftwnd_plan> planmap; //do work csc.resize(msc.size()); for(int w=0; w<msc.size(); w++) { //allocate space int xn = msc[w].m(); int yn = msc[w].n(); int xh = xn/2; int yh = yn/2; //shift CpxNumMat tpdata(xn,yn); fdct_usfft_ifftshift(xn,yn,xh,yh,msc[w],tpdata); //fft map<intpair,fftwnd_plan>::iterator mit=planmap.find( intpair(xn,yn) ); fftwnd_plan p = NULL; if(mit!=planmap.end()) { p = (*mit).second; } else { p = fftw2d_create_plan(yn, xn, FFTW_BACKWARD, FFTW_ESTIMATE | FFTW_IN_PLACE); planmap[ intpair(xn,yn) ] = p; } fftwnd_one(p, (fftw_complex*)tpdata.data(), NULL); double sqrtprod = sqrt(double(xn*yn)); for(int i=0; i<xn; i++) for(int j=0; j<yn; j++) tpdata(i,j) /= sqrtprod; //shift csc[w].resize(xn,yn,-xh,-yh); fdct_usfft_fftshift(xn,yn,xh,yh,tpdata,csc[w]); } //delete planners for(map<intpair,fftwnd_plan>::iterator mit=planmap.begin(); mit!=planmap.end(); mit++) { fftwnd_plan p = (*mit).second; fftwnd_destroy_plan(p); } return 0;}//--------------------int fdct_usfft_wavelet(CpxOffMat& Xhgh, vector<CpxOffMat>& csc){ int N1 = Xhgh.m(); int N2 = Xhgh.n(); int F1 = -Xhgh.s(); int F2 = -Xhgh.t(); CpxNumMat T(N1, N2); fdct_usfft_ifftshift(N1, N2, F1, F2, Xhgh, T); fftwnd_plan p = fftw2d_create_plan(N2, N1, FFTW_BACKWARD, FFTW_ESTIMATE | FFTW_IN_PLACE); fftwnd_one(p, (fftw_complex*)T.data(), NULL); fftwnd_destroy_plan(p); double sqrtprod = sqrt(double(N1*N2)); for(int i=0; i<N1; i++) for(int j=0; j<N2; j++) T(i,j) /= sqrtprod; csc[0].resize(N1, N2, -F1, -F2); fdct_usfft_fftshift(N1, N2, F1, F2, T, csc[0]); return 0;}//--------------------int fdct_usfft_1dinterp(DblNumMat& off, DblNumMat& wgt, CpxOffVec& val, CpxNumMat& res, map<int, fftw_plan>& f1map, map<int, fftw_plan>& b1map){ if(off.n()<=64) { //SIMPLE INTERPOLATION //-------------------------------------------- int N = val.m(); int F = -val.s(); fftw_plan fp = NULL; map<int, fftw_plan>::iterator fit = f1map.find(N); if(fit!=f1map.end()) { fp = (*fit).second; } else { fp = fftw_create_plan(N, FFTW_FORWARD, FFTW_ESTIMATE | FFTW_IN_PLACE); f1map[N] = fp; } fftw_plan bp = NULL; map<int, fftw_plan>::iterator bit = b1map.find(N); if(bit!=b1map.end()) { bp = (*bit).second; } else { bp = fftw_create_plan(N, FFTW_BACKWARD, FFTW_ESTIMATE | FFTW_IN_PLACE); b1map[N] = bp; } //CpxOffVec val //right value CpxOffVec feq(N, -F); //right freq CpxOffVec vvv(N, -F); //new value CpxOffVec fff(N, -F); //new freq CpxNumVec tmp(N); //1. fft_mid val fdct_usfft_ifftshift(N, F, val, tmp); fftw_one(fp, (fftw_complex*)tmp.data(), NULL); //fft double scale = sqrt(double(N)); for(int k=0; k<N; k++) tmp(k) /= scale; //scaling fdct_usfft_fftshift(N, F, tmp, feq); //frequency //2. for each wedge, multiply, ifft and put to res int nbwedges = off.n(); for(int w=0; w<nbwedges; w++) { for(int k=-F; k<-F+N; k++) { double phase = 2.0*M_PI*double(k)/double(N) * off(0,w); fff(k) = feq(k) * polar(1.0, phase); } //new frequency fdct_usfft_ifftshift(N, F, fff, tmp); fftw_one(bp, (fftw_complex*)tmp.data(), NULL); double scale = sqrt(double(N)); for(int k=0; k<N; k++) tmp(k) /= scale; //scaling fdct_usfft_fftshift(N, F, tmp, vvv); //new value for(int k=0; k<off.m(); k++) { int rk = (k>F) ? k-N : k; res(k,w) = vvv(rk) * wgt(k,w); } } } else { //USFFT INTERPOLATION //-------------------------------------------- int L = 4; int D = 16; int N = val.m(); int F = -val.s(); fftw_plan fp = NULL; map<int, fftw_plan>::iterator fit=f1map.find(N); if(fit!=f1map.end()) { fp = (*fit).second; } else { fp = fftw_create_plan(N, FFTW_FORWARD, FFTW_ESTIMATE | FFTW_IN_PLACE); f1map[N] = fp; } fftw_plan bp = NULL; map<int, fftw_plan>::iterator bit = b1map.find(D*N); if(bit!=b1map.end()) { bp = (*bit).second; } else { bp = fftw_create_plan(D*N, FFTW_BACKWARD, FFTW_ESTIMATE | FFTW_IN_PLACE); b1map[D*N] = bp; } CpxNumVec tmp(N); CpxNumVec exttmp(D*N); CpxOffVec feq(N, -F); vector<CpxOffVec> extdat(L); //1. get freq fdct_usfft_ifftshift(N, F, val, tmp); fftw_one(fp, (fftw_complex*)tmp.data(), NULL); //here tmp are the real frequencies double scale = double(N); for(int k=0; k<N; k++) { tmp(k) /= scale; } //scaling fdct_usfft_fftshift(N, F, tmp, feq); //frequency //2. extend frequency and get frequencies of derivatives extdat[0].resize(D*N, -D*N/2); for(int k=-F; k<-F+N; k++) { extdat[0](k) = feq(k); } for(int l=1; l<L; l++) { extdat[l].resize(D*N, -D*N/2); for(int k=-F; k<-F+N; k++) { extdat[l](k) = extdat[l-1](k) * cpx(0,k); } } //3. get derivatives for(int l=0; l<L; l++) { fdct_usfft_ifftshift(D*N, D*N/2, extdat[l], exttmp); fftw_one(bp, (fftw_complex*)exttmp.data(), NULL); fdct_usfft_fftshift(D*N, D*N/2, exttmp, extdat[l]); } //extdat[l] contains the lth derivative //4. do tayler for each point double step = 2.0* M_PI / double(D*N); for(int j=0; j<off.n(); j++) for(int i=0; i<off.m(); i++) { //1. find the grid point on the left, double cof = off(i,j) / double(N) * 2.0*M_PI; if(cof<-M_PI) cof+= 2.0*M_PI; else if(cof>=M_PI) cof-= 2.0*M_PI; //collapse into [-pi,pi) int ind = int(floor(cof/step)); ind = min(max(ind, -D*N/2), D*N/2-1); double dta = cof-ind*step; double pow = 1; cpx sum(0.0,0.0);// for(int l=0; l<L; l++) { sum += extdat[l](ind) * pow; pow = pow * dta/(l+1); } res(i,j) = sum * wgt(i,j); } } return 0;}FDCT_USFFT_NS_END_NAMESPACE
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -