📄 kdr.m
字号:
function [Info] = KDR(Label, Inst, strParam)
%==========================================================================
% Kernel Statistics
%--------------------------------------------------------------------------
% Inputs:
% label [m x 1] : training data class label or response
% inst [m x n] : training data inputs
% strParam [string]: parameters
% -s : statistic method. 0-PCA, 1-SIR (default:0)
% -t : kernel type. 0-linear, 1-polynomial, 2-radial basis (default:2)
% -r : ratio of random subset size to the full data size (default:1)
% -z : number of slices (default:20)
% If NumOfSlice >= 1, it represents NumOfSlice slices.
% If NumOfSlice = 0, it extracts slices according to class labels.
% -p : number of principal components (default:1)
% If NumOfPC= r >= 1, it extracts the first r leading eigenvectors.
% If NumOfPC= r < 1, it extracts leading eigenvectors whose sum
% of eigenvalues is greater than 100*r% of the total
% sum of eigenvalues
% -g : gamma in kernel function (default:0.1)
% -d [1 x 1] : degree of polynomial kernel (default:2)
% -b [1 x 1] : constant term of polynomial kernel (default:0)
% -m [1 x 1] : scalar factor of polynomial kernel (default:1)
%--------------------------------------------------------------------------
% Outputs:
% Info [struct]: results of Kernel Statistics method
% .PC [? x ?] : principal components of data
% .EV [? x 1] : eigenvalues respect to the principal components
% .Ratio [1 x 1] :
% .RS [? x n] : reduced set
% .Space [string]: the space of Kernel Statistics method
% .Params [struct]: parameters specified by the user in the inputs
%--------------------------------------------------------------------------
% setting up parameters
params.s=0; params.t=2; params.r=1; params.z=20; params.p=1; params.g=0.1;
params.d=2; params.b=0; params.m=1;
[pInd, pVal] = strread(strParam, '%s%f', 'delimiter', ' ');
for i=1:length(pInd)
if(strcmp(pInd{i}, '-s'))
% statistic method
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -