⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 env.c

📁 jos lab3代码
💻 C
字号:
/* See COPYRIGHT for copyright information. */#include <inc/x86.h>#include <inc/mmu.h>#include <inc/error.h>#include <inc/string.h>#include <inc/assert.h>#include <inc/elf.h>#include <kern/env.h>#include <kern/pmap.h>#include <kern/trap.h>#include <kern/monitor.h>struct Env *envs = NULL;		// All environmentsstruct Env *curenv = NULL;	        // The current envstatic struct Env_list env_free_list;	// Free list#define ENVGENSHIFT	12		// >= LOGNENV//// Converts an envid to an env pointer.//// RETURNS//   0 on success, -E_BAD_ENV on error.//   On success, sets *penv to the environment.//   On error, sets *penv to NULL.//intenvid2env(envid_t envid, struct Env **env_store, bool checkperm){	struct Env *e;	// If envid is zero, return the current environment.	if (envid == 0) {		*env_store = curenv;		return 0;	}	// Look up the Env structure via the index part of the envid,	// then check the env_id field in that struct Env	// to ensure that the envid is not stale	// (i.e., does not refer to a _previous_ environment	// that used the same slot in the envs[] array).	e = &envs[ENVX(envid)];	if (e->env_status == ENV_FREE || e->env_id != envid) {		*env_store = 0;		return -E_BAD_ENV;	}	// Check that the calling environment has legitimate permission	// to manipulate the specified environment.	// If checkperm is set, the specified environment	// must be either the current environment	// or an immediate child of the current environment.	if (checkperm && e != curenv && e->env_parent_id != curenv->env_id) {		*env_store = 0;		return -E_BAD_ENV;	}	*env_store = e;	return 0;}//// Mark all environments in 'envs' as free, set their env_ids to 0,// and insert them into the env_free_list.// Insert in reverse order, so that the first call to env_alloc()// returns envs[0].//voidenv_init(void){	// LAB 3: Your code here.	LIST_INIT(&env_free_list);	struct Env *penv = &envs[NENV - 1];	for (; penv >= &envs[0]; penv--)	{		penv->env_id = 0;		penv->env_status = ENV_FREE;		LIST_INSERT_HEAD(&env_free_list, penv, env_link);	}}//// Initialize the kernel virtual memory layout for environment e.// Allocate a page directory, set e->env_pgdir and e->env_cr3 accordingly,// and initialize the kernel portion of the new environment's address space.// Do NOT (yet) map anything into the user portion// of the environment's virtual address space.//// Returns 0 on success, < 0 on error.  Errors include://	-E_NO_MEM if page directory or table could not be allocated.//static intenv_setup_vm(struct Env *e){	int i, r;	struct Page *p = NULL;	// Allocate a page for the page directory	if ((r = page_alloc(&p)) < 0)		return r;	// Now, set e->env_pgdir and e->env_cr3,	// and initialize the page directory.	//	// Hint:	//    - The VA space of all envs is identical above UTOP	//      (except at VPT and UVPT, which we've set below).	//	See inc/memlayout.h for permissions and layout.	//	Can you use boot_pgdir as a template?  Hint: Yes.	//	(Make sure you got the permissions right in Lab 2.)	//    - The initial VA below UTOP is empty.	//    - You do not need to make any more calls to page_alloc.	//    - Note: pp_ref is not maintained for most physical pages	//	mapped above UTOP -- but you do need to increment	//	env_pgdir's pp_ref!	// LAB 3: Your code here.	e->env_pgdir = page2kva(p);	p->pp_ref++;	e->env_cr3 = PADDR(e->env_pgdir);	memmove(e->env_pgdir, boot_pgdir, PGSIZE);	// VPT and UVPT map the env's own page table, with	// different permissions.	e->env_pgdir[PDX(VPT)]  = e->env_cr3 | PTE_P | PTE_W;	e->env_pgdir[PDX(UVPT)] = e->env_cr3 | PTE_P | PTE_U;	return 0;}//// Allocates and initializes a new environment.// On success, the new environment is stored in *newenv_store.//// Returns 0 on success, < 0 on failure.  Errors include://	-E_NO_FREE_ENV if all NENVS environments are allocated//	-E_NO_MEM on memory exhaustion//intenv_alloc(struct Env **newenv_store, envid_t parent_id){	int32_t generation;	int r;	struct Env *e;	if (!(e = LIST_FIRST(&env_free_list)))		return -E_NO_FREE_ENV;	// Allocate and set up the page directory for this environment.	if ((r = env_setup_vm(e)) < 0)		return r;	// Generate an env_id for this environment.	generation = (e->env_id + (1 << ENVGENSHIFT)) & ~(NENV - 1);	if (generation <= 0)	// Don't create a negative env_id.		generation = 1 << ENVGENSHIFT;	e->env_id = generation | (e - envs);		// Set the basic status variables.	e->env_parent_id = parent_id;	e->env_status = ENV_RUNNABLE;	e->env_runs = 0;	// Clear out all the saved register state,	// to prevent the register values	// of a prior environment inhabiting this Env structure	// from "leaking" into our new environment.	memset(&e->env_tf, 0, sizeof(e->env_tf));	// Set up appropriate initial values for the segment registers.	// GD_UD is the user data segment selector in the GDT, and 	// GD_UT is the user text segment selector (see inc/memlayout.h).	// The low 2 bits of each segment register contains the	// Requestor Privilege Level (RPL); 3 means user mode.	e->env_tf.tf_ds = GD_UD | 3;	e->env_tf.tf_es = GD_UD | 3;	e->env_tf.tf_ss = GD_UD | 3;	e->env_tf.tf_esp = USTACKTOP;	e->env_tf.tf_cs = GD_UT | 3;	// You will set e->env_tf.tf_eip later.	// commit the allocation	LIST_REMOVE(e, env_link);	*newenv_store = e;	cprintf("[%08x] new env %08x\n", curenv ? curenv->env_id : 0, e->env_id);	return 0;}//// Allocate len bytes of physical memory for environment env,// and map it at virtual address va in the environment's address space.// Does not zero or otherwise initialize the mapped pages in any way.// Pages should be writable by user and kernel.// Panic if any allocation attempt fails.//static voidsegment_alloc(struct Env *e, void *va, size_t len){	// LAB 3: Your code here.va = ROUNDDOWN(va, PGSIZE);	len = ROUNDUP(len, PGSIZE);	uintptr_t p = (uintptr_t) va, p_end = p + len;	for (; p < p_end; p += PGSIZE)	{		int r = 0;		struct Page *pp = NULL;		if ((r = page_alloc(&pp)) < 0)			panic("segment_alloc: %e", r);		/*		physaddr_t pa = page2pa(pp);		pte_t *ppte = pgdir_walk(e->env_pgdir, (void *) p, 1);		*ppte = pa | PTE_U | PTE_W | PTE_P;		pp->pp_ref++;		*/		r = page_insert(e->env_pgdir, pp, (void *) p, PTE_U | PTE_W);		if (r < 0)			panic("segment_alloc: %e", r);	}	// (But only if you need it for load_icode.)	//	// Hint: It is easier to use segment_alloc if the caller can pass	//   'va' and 'len' values that are not page-aligned.	//   You should round va down, and round len up.}//// Set up the initial program binary, stack, and processor flags// for a user process.// This function is ONLY called during kernel initialization,// before running the first user-mode environment.//// This function loads all loadable segments from the ELF binary image// into the environment's user memory, starting at the appropriate// virtual addresses indicated in the ELF program header.// At the same time it clears to zero any portions of these segments// that are marked in the program header as being mapped// but not actually present in the ELF file - i.e., the program's bss section.//// All this is very similar to what our boot loader does, except the boot// loader also needs to read the code from disk.  Take a look at// boot/main.c to get ideas.//// Finally, this function maps one page for the program's initial stack.//// load_icode panics if it encounters problems.//  - How might load_icode fail?  What might be wrong with the given input?//static voidload_icode(struct Env *e, uint8_t *binary, size_t size){	// Hints: 	//  Load each program segment into virtual memory	//  at the address specified in the ELF section header.	//  You should only load segments with ph->p_type == ELF_PROG_LOAD.	//  Each segment's virtual address can be found in ph->p_va	//  and its size in memory can be found in ph->p_memsz.	//  The ph->p_filesz bytes from the ELF binary, starting at	//  'binary + ph->p_offset', should be copied to virtual address	//  ph->p_va.  Any remaining memory bytes should be cleared to zero.	//  (The ELF header should have ph->p_filesz <= ph->p_memsz.)	//  Use functions from the previous lab to allocate and map pages.	//	//  All page protection bits should be user read/write for now.	//  ELF segments are not necessarily page-aligned, but you can	//  assume for this function that no two segments will touch	//  the same virtual page.	//	//  You may find a function like segment_alloc useful.	//	//  Loading the segments is much simpler if you can move data	//  directly into the virtual addresses stored in the ELF binary.	//  So which page directory should be in force during	//  this function?	//	// Hint:	//  You must also do something with the program's entry point,	//  to make sure that the environment starts executing there.	//  What?  (See env_run() and env_pop_tf() below.)	// LAB 3: Your code here.	struct Elf *env_elf;	struct Proghdr *ph, *eph;	env_elf = (struct Elf *)binary;	ph = (struct Proghdr *)((uint8_t*) env_elf + env_elf->e_phoff);	eph = ph + env_elf->e_phnum;	for(; ph != eph; ph++)	{        	if(ph->p_type == ELF_PROG_LOAD){        		segment_alloc(e, (void*) ph->p_va, ph->p_memsz);        	lcr3(e->env_cr3);        	memmove((void*) ph->p_va, binary + ph->p_offset, ph->p_filesz);        	memset((void *)(ph->p_va + ph->p_filesz), 0, ph->p_memsz - ph->p_filesz);        }    }    	e->env_tf.tf_eip = env_elf->e_entry;	// Now map one page for the program's initial stack	// at virtual address USTACKTOP - PGSIZE.	// LAB 3: Your code here.	struct Page *pp;	if(page_alloc(&pp) != 0) 		panic("load code no memory\n");	page_insert(e->env_pgdir, pp , (void*)USTACKTOP - PGSIZE , PTE_P|PTE_W|PTE_U);}//// Allocates a new env and loads the named elf binary into it.// This function is ONLY called during kernel initialization,// before running the first user-mode environment.// The new env's parent ID is set to 0.//// Where does the result go? // By convention, envs[0] is the first environment allocated, so// whoever calls env_create simply looks for the newly created// environment there. voidenv_create(uint8_t *binary, size_t size){	// LAB 3: Your code here.	struct Env*  en;	env_alloc(&en,0);	load_icode ( en,binary,size);    //struct Env *e, uint8_t *binary, size_t size)}//// Frees env e and all memory it uses.// voidenv_free(struct Env *e){	pte_t *pt;	uint32_t pdeno, pteno;	physaddr_t pa;		// If freeing the current environment, switch to boot_pgdir	// before freeing the page directory, just in case the page	// gets reused.	if (e == curenv)		lcr3(boot_cr3);	// Note the environment's demise.	cprintf("[%08x] free env %08x\n", curenv ? curenv->env_id : 0, e->env_id);	// Flush all mapped pages in the user portion of the address space	static_assert(UTOP % PTSIZE == 0);	for (pdeno = 0; pdeno < PDX(UTOP); pdeno++) {		// only look at mapped page tables		if (!(e->env_pgdir[pdeno] & PTE_P))			continue;		// find the pa and va of the page table		pa = PTE_ADDR(e->env_pgdir[pdeno]);		pt = (pte_t*) KADDR(pa);		// unmap all PTEs in this page table		for (pteno = 0; pteno <= PTX(~0); pteno++) {			if (pt[pteno] & PTE_P)				page_remove(e->env_pgdir, PGADDR(pdeno, pteno, 0));		}		// free the page table itself		e->env_pgdir[pdeno] = 0;		page_decref(pa2page(pa));	}	// free the page directory	pa = e->env_cr3;	e->env_pgdir = 0;	e->env_cr3 = 0;	page_decref(pa2page(pa));	// return the environment to the free list	e->env_status = ENV_FREE;	LIST_INSERT_HEAD(&env_free_list, e, env_link);}//// Frees environment e.// If e was the current env, then runs a new environment (and does not return// to the caller).//voidenv_destroy(struct Env *e) {	env_free(e);	cprintf("Destroyed the only environment - nothing more to do!\n");	while (1)		monitor(NULL);}//// Restores the register values in the Trapframe with the 'iret' instruction.// This exits the kernel and starts executing some environment's code.// This function does not return.//voidenv_pop_tf(struct Trapframe *tf){	__asm __volatile("movl %0,%%esp\n"		"\tpopal\n"		"\tpopl %%es\n"		"\tpopl %%ds\n"		"\taddl $0x8,%%esp\n" /* skip tf_trapno and tf_errcode */		"\tiret"		: : "g" (tf) : "memory");	panic("iret failed");  /* mostly to placate the compiler */}//// Context switch from curenv to env e.// Note: if this is the first call to env_run, curenv is NULL.//  (This function does not return.)//voidenv_run(struct Env *e){	// Step 1: If this is a context switch (a new environment is running),	//	   then set 'curenv' to the new environment,	//	   update its 'env_runs' counter, and	//	   and use lcr3() to switch to its address space.	// Step 2: Use env_pop_tf() to restore the environment's	//         registers and drop into user mode in the	//         environment.	// Hint: This function loads the new environment's state from	//	e->env_tf.  Go back through the code you wrote above	//	and make sure you have set the relevant parts of	//	e->env_tf to sensible values.		// LAB 3: Your code here.	curenv = e;	lcr3(e->env_cr3);	env_pop_tf(&e->env_tf);        panic("env_run not yet implemented");}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -