📄 std_complex.h
字号:
__imag__ _M_value = 0.0f; return *this; } inline complex<float>& complex<float>::operator+= (float __f) { __real__ _M_value += __f; return *this; } inline complex<float>& complex<float>::operator-= (float __f) { __real__ _M_value -= __f; return *this; } inline complex<float>& complex<float>::operator*= (float __f) { _M_value *= __f; return *this; } inline complex<float>& complex<float>::operator/= (float __f) { _M_value /= __f; return *this; } template<typename _Tp> inline complex<float>& complex<float>::operator= (const complex<_Tp>& __z) { __real__ _M_value = __z.real(); __imag__ _M_value = __z.imag(); return *this; } template<typename _Tp> inline complex<float>& complex<float>::operator+= (const complex<_Tp>& __z) { __real__ _M_value += __z.real(); __imag__ _M_value += __z.imag(); return *this; } template<typename _Tp> inline complex<float>& complex<float>::operator-= (const complex<_Tp>& __z) { __real__ _M_value -= __z.real(); __imag__ _M_value -= __z.real(); return *this; } template<typename _Tp> inline complex<float>& complex<float>::operator*= (const complex<_Tp>& __z) { _ComplexT __t; __real__ __t = __z.real(); __imag__ __t = __z.imag(); _M_value *= __t; return *this; } template<typename _Tp> inline complex<float>& complex<float>::operator/= (const complex<_Tp>& __z) { _ComplexT __t; __real__ __t = __z.real(); __imag__ __t = __z.imag(); _M_value /= __t; return *this; } // // complex<double> continued. // inline complex<double>::complex(double __r, double __i) { __real__ _M_value = __r; __imag__ _M_value = __i; } inline complex<double>::complex(const complex<float>& __z) : _M_value(_ComplexT(__z._M_value)) {} inline complex<double>::complex(const complex<long double>& __z) { __real__ _M_value = __z.real(); __imag__ _M_value = __z.imag(); } inline complex<double>& complex<double>::operator= (double __d) { __real__ _M_value = __d; __imag__ _M_value = 0.0; return *this; } inline complex<double>& complex<double>::operator+= (double __d) { __real__ _M_value += __d; return *this; } inline complex<double>& complex<double>::operator-= (double __d) { __real__ _M_value -= __d; return *this; } inline complex<double>& complex<double>::operator*= (double __d) { _M_value *= __d; return *this; } inline complex<double>& complex<double>::operator/= (double __d) { _M_value /= __d; return *this; } template<typename _Tp> inline complex<double>& complex<double>::operator= (const complex<_Tp>& __z) { __real__ _M_value = __z.real(); __imag__ _M_value = __z.imag(); return *this; } template<typename _Tp> inline complex<double>& complex<double>::operator+= (const complex<_Tp>& __z) { __real__ _M_value += __z.real(); __imag__ _M_value += __z.imag(); return *this; } template<typename _Tp> inline complex<double>& complex<double>::operator-= (const complex<_Tp>& __z) { __real__ _M_value -= __z.real(); __imag__ _M_value -= __z.imag(); return *this; } template<typename _Tp> inline complex<double>& complex<double>::operator*= (const complex<_Tp>& __z) { _ComplexT __t; __real__ __t = __z.real(); __imag__ __t = __z.imag(); _M_value *= __t; return *this; } template<typename _Tp> inline complex<double>& complex<double>::operator/= (const complex<_Tp>& __z) { _ComplexT __t; __real__ __t = __z.real(); __imag__ __t = __z.imag(); _M_value /= __t; return *this; } // // Primary template class complex continued. // // 26.2.4 template<typename _Tp> inline complex<_Tp>::complex(const _Tp& __r, const _Tp& __i) : _M_real(__r), _M_imag(__i) {} template<typename _Tp> template<typename _Up> inline complex<_Tp>::complex(const complex<_Up>& __z) : _M_real(__z.real()), _M_imag(__z.imag()) {} // 26.2.7/6 template<typename _Tp> inline complex<_Tp> conj(const complex<_Tp>& __z) { return complex<_Tp>(__z.real(), -__z.imag()); } // 26.2.7/4 template<typename _Tp> inline _Tp norm(const complex<_Tp>& __z) { // XXX: Grammar school computation return __z.real() * __z.real() + __z.imag() * __z.imag(); } template<typename _Tp> complex<_Tp>& complex<_Tp>::operator= (const _Tp& __t) { _M_real = __t; _M_imag = _Tp(); return *this; } // 26.2.5/1 template<typename _Tp> inline complex<_Tp>& complex<_Tp>::operator+= (const _Tp& __t) { _M_real += __t; return *this; } // 26.2.5/3 template<typename _Tp> inline complex<_Tp>& complex<_Tp>::operator-= (const _Tp& __t) { _M_real -= __t; return *this; } // 26.2.5/5 template<typename _Tp> complex<_Tp>& complex<_Tp>::operator*= (const _Tp& __t) { _M_real *= __t; _M_imag *= __t; return *this; } // 26.2.5/7 template<typename _Tp> complex<_Tp>& complex<_Tp>::operator/= (const _Tp& __t) { _M_real /= __t; _M_imag /= __t; return *this; } template<typename _Tp> template<typename _Up> complex<_Tp>& complex<_Tp>::operator= (const complex<_Up>& __z) { _M_real = __z.real(); _M_imag = __z.imag(); return *this; } // 26.2.5/9 template<typename _Tp> template<typename _Up> complex<_Tp>& complex<_Tp>::operator+= (const complex<_Up>& __z) { _M_real += __z.real(); _M_imag += __z.imag(); return *this; } // 26.2.5/11 template<typename _Tp> template<typename _Up> complex<_Tp>& complex<_Tp>::operator-= (const complex<_Up>& __z) { _M_real -= __z.real(); _M_imag -= __z.imag(); return *this; } // 26.2.5/13 // XXX: this is a grammar school implementation. template<typename _Tp> template<typename _Up> complex<_Tp>& complex<_Tp>::operator*= (const complex<_Up>& __z) { _Tp __r = _M_real * __z.real() - _M_imag * __z.imag(); _M_imag = _M_real * __z.imag() + _M_imag * __z.real(); _M_real = __r; return *this; } // 26.2.5/15 // XXX: this is a grammar school implementation. template<typename _Tp> template<typename _Up> complex<_Tp>& complex<_Tp>::operator/= (const complex<_Up>& __z) { _Tp __r = _M_real * __z.real() + _M_imag * __z.imag(); _Tp __n = norm(__z); _M_imag = (_M_real * __z.imag() - _M_imag * __z.real()) / __n; _M_real = __r / __n; return *this; } // Operators: template<typename _Tp> inline complex<_Tp> operator+(const complex<_Tp>& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) += __y; } template<typename _Tp> inline complex<_Tp> operator+(const complex<_Tp>& __x, const _Tp& __y) { return complex<_Tp> (__x) += __y; } template<typename _Tp> inline complex<_Tp> operator+(const _Tp& __x, const complex<_Tp>& __y) { return complex<_Tp> (__y) += __x; } template<typename _Tp> inline complex<_Tp> operator-(const complex<_Tp>& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) -= __y; } template<typename _Tp> inline complex<_Tp> operator-(const complex<_Tp>& __x, const _Tp& __y) { return complex<_Tp> (__x) -= __y; } template<typename _Tp> inline complex<_Tp> operator-(const _Tp& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) -= __y; } template<typename _Tp> inline complex<_Tp> operator*(const complex<_Tp>& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) *= __y; } template<typename _Tp> inline complex<_Tp> operator*(const complex<_Tp>& __x, const _Tp& __y) { return complex<_Tp> (__x) *= __y; } template<typename _Tp> inline complex<_Tp> operator*(const _Tp& __x, const complex<_Tp>& __y) { return complex<_Tp> (__y) *= __x; } template<typename _Tp> inline complex<_Tp> operator/(const complex<_Tp>& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) /= __y; } template<typename _Tp> inline complex<_Tp> operator/(const complex<_Tp>& __x, const _Tp& __y) { return complex<_Tp> (__x) /= __y; } template<typename _Tp> inline complex<_Tp> operator/(const _Tp& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) /= __y; } template<typename _Tp> inline complex<_Tp> operator+(const complex<_Tp>& __x) { return __x; } template<typename _Tp> inline complex<_Tp> operator-(const complex<_Tp>& __x) { return complex<_Tp>(-__x.real(), -__x.imag()); } template<typename _Tp> inline bool operator==(const complex<_Tp>& __x, const complex<_Tp>& __y) { return __x.real() == __y.real() && __x.imag == __y.imag(); } template<typename _Tp> inline bool operator==(const complex<_Tp>& __x, const _Tp& __y) { return __x.real() == __y && __x.imag() == 0; } template<typename _Tp> inline bool operator==(const _Tp& __x, const complex<_Tp>& __y) { return __x == __y.real() && 0 == __y.imag(); } template<typename _Tp> inline bool operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y) { return __x.real() != __y.real() || __x.imag() != __y.imag(); } template<typename _Tp> inline bool operator!=(const complex<_Tp>& __x, const _Tp& __y) { return __x.real() != __y || __x.imag() != 0; } template<typename _Tp> inline bool operator!=(const _Tp& __x, const complex<_Tp>& __y) { return __x != __y.real() || 0 != __y.imag(); } template<typename _Tp, typename _CharT, class _Traits> basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>&, complex<_Tp>&); template<typename _Tp, typename _CharT, class _Traits> basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>&, const complex<_Tp>&); // Values: template <typename _Tp> inline _Tp real (const complex<_Tp>& __z) { return __z.real(); } template <typename _Tp> inline _Tp imag (const complex<_Tp>& __z) { return __z.imag(); } // We use here a few more specializations. template<> inline complex<float> conj(const complex<float> &__x)#if defined (__CYGWIN__) || defined (__MINGW32__) { complex<float> __f (~__x._M_value); return __f; }#else { return complex<float>(~__x._M_value); }#endif template<> inline complex<double> conj(const complex<double> &__x) { return complex<double> (~__x._M_value); } template<> inline complex<long double> conj(const complex<long double> &__x) { return complex<long double> (~__x._M_value); }} // namespace std#endif /* _CPP_COMPLEX */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -