⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kqueue_reactor.hpp

📁 这是国外的resip协议栈
💻 HPP
📖 第 1 页 / 共 2 页
字号:
  // Cancel the timer associated with the given token. Returns the number of  // handlers that have been posted or dispatched.  template <typename Time_Traits>  std::size_t cancel_timer(timer_queue<Time_Traits>& timer_queue, void* token)  {    asio::detail::mutex::scoped_lock lock(mutex_);    std::size_t n = timer_queue.cancel_timer(token);    if (n > 0)      interrupter_.interrupt();    return n;  }private:  friend class task_io_service<kqueue_reactor<Own_Thread> >;  // Run the kqueue loop.  void run(bool block)  {    asio::detail::mutex::scoped_lock lock(mutex_);    // Dispatch any operation cancellations that were made while the select    // loop was not running.    read_op_queue_.dispatch_cancellations();    write_op_queue_.dispatch_cancellations();    except_op_queue_.dispatch_cancellations();    for (std::size_t i = 0; i < timer_queues_.size(); ++i)      timer_queues_[i]->dispatch_cancellations();    // Check if the thread is supposed to stop.    if (stop_thread_)    {      cleanup_operations_and_timers(lock);      return;    }    // We can return immediately if there's no work to do and the reactor is    // not supposed to block.    if (!block && read_op_queue_.empty() && write_op_queue_.empty()        && except_op_queue_.empty() && all_timer_queues_are_empty())    {      cleanup_operations_and_timers(lock);      return;    }    // Determine how long to block while waiting for events.    timespec timeout_buf = { 0, 0 };    timespec* timeout = block ? get_timeout(timeout_buf) : &timeout_buf;    wait_in_progress_ = true;    lock.unlock();    // Block on the kqueue descriptor.    struct kevent events[128];    int num_events = kevent(kqueue_fd_, 0, 0, events, 128, timeout);    lock.lock();    wait_in_progress_ = false;    // Block signals while dispatching operations.    asio::detail::signal_blocker sb;    // Dispatch the waiting events.    for (int i = 0; i < num_events; ++i)    {      int descriptor = events[i].ident;      if (descriptor == interrupter_.read_descriptor())      {        interrupter_.reset();      }      else if (events[i].filter == EVFILT_READ)      {        // Dispatch operations associated with the descriptor.        bool more_reads = false;        bool more_except = false;        if (events[i].flags & EV_ERROR)        {          asio::error_code error(              events[i].data, asio::error::get_system_category());          except_op_queue_.dispatch_all_operations(descriptor, error);          read_op_queue_.dispatch_all_operations(descriptor, error);        }        else if (events[i].flags & EV_OOBAND)        {          asio::error_code error;          more_except = except_op_queue_.dispatch_operation(descriptor, error);          if (events[i].data > 0)            more_reads = read_op_queue_.dispatch_operation(descriptor, error);          else            more_reads = read_op_queue_.has_operation(descriptor);        }        else        {          asio::error_code error;          more_reads = read_op_queue_.dispatch_operation(descriptor, error);          more_except = except_op_queue_.has_operation(descriptor);        }        // Update the descriptor in the kqueue.        struct kevent event;        if (more_reads)          EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, 0, 0, 0);        else if (more_except)          EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, EV_OOBAND, 0, 0);        else          EV_SET(&event, descriptor, EVFILT_READ, EV_DELETE, 0, 0, 0);        if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)        {          asio::error_code error(errno,              asio::error::get_system_category());          except_op_queue_.dispatch_all_operations(descriptor, error);          read_op_queue_.dispatch_all_operations(descriptor, error);        }      }      else if (events[i].filter == EVFILT_WRITE)      {        // Dispatch operations associated with the descriptor.        bool more_writes = false;        if (events[i].flags & EV_ERROR)        {          asio::error_code error(              events[i].data, asio::error::get_system_category());          write_op_queue_.dispatch_all_operations(descriptor, error);        }        else        {          asio::error_code error;          more_writes = write_op_queue_.dispatch_operation(descriptor, error);        }        // Update the descriptor in the kqueue.        struct kevent event;        if (more_writes)          EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD, 0, 0, 0);        else          EV_SET(&event, descriptor, EVFILT_WRITE, EV_DELETE, 0, 0, 0);        if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)        {          asio::error_code error(errno,              asio::error::get_system_category());          write_op_queue_.dispatch_all_operations(descriptor, error);        }      }    }    read_op_queue_.dispatch_cancellations();    write_op_queue_.dispatch_cancellations();    except_op_queue_.dispatch_cancellations();    for (std::size_t i = 0; i < timer_queues_.size(); ++i)    {      timer_queues_[i]->dispatch_timers();      timer_queues_[i]->dispatch_cancellations();    }    // Issue any pending cancellations.    for (std::size_t i = 0; i < pending_cancellations_.size(); ++i)      cancel_ops_unlocked(pending_cancellations_[i]);    pending_cancellations_.clear();    cleanup_operations_and_timers(lock);  }  // Run the select loop in the thread.  void run_thread()  {    asio::detail::mutex::scoped_lock lock(mutex_);    while (!stop_thread_)    {      lock.unlock();      run(true);      lock.lock();    }  }  // Entry point for the select loop thread.  static void call_run_thread(kqueue_reactor* reactor)  {    reactor->run_thread();  }  // Interrupt the select loop.  void interrupt()  {    interrupter_.interrupt();  }  // Create the kqueue file descriptor. Throws an exception if the descriptor  // cannot be created.  static int do_kqueue_create()  {    int fd = kqueue();    if (fd == -1)    {      boost::throw_exception(          asio::system_error(            asio::error_code(errno,              asio::error::get_system_category()),            "kqueue"));    }    return fd;  }  // Check if all timer queues are empty.  bool all_timer_queues_are_empty() const  {    for (std::size_t i = 0; i < timer_queues_.size(); ++i)      if (!timer_queues_[i]->empty())        return false;    return true;  }  // Get the timeout value for the kevent call.  timespec* get_timeout(timespec& ts)  {    if (all_timer_queues_are_empty())      return 0;    // By default we will wait no longer than 5 minutes. This will ensure that    // any changes to the system clock are detected after no longer than this.    boost::posix_time::time_duration minimum_wait_duration      = boost::posix_time::minutes(5);    for (std::size_t i = 0; i < timer_queues_.size(); ++i)    {      boost::posix_time::time_duration wait_duration        = timer_queues_[i]->wait_duration();      if (wait_duration < minimum_wait_duration)        minimum_wait_duration = wait_duration;    }    if (minimum_wait_duration > boost::posix_time::time_duration())    {      ts.tv_sec = minimum_wait_duration.total_seconds();      ts.tv_nsec = minimum_wait_duration.total_nanoseconds() % 1000000000;    }    else    {      ts.tv_sec = 0;      ts.tv_nsec = 0;    }    return &ts;  }  // Cancel all operations associated with the given descriptor. The do_cancel  // function of the handler objects will be invoked. This function does not  // acquire the kqueue_reactor's mutex.  void cancel_ops_unlocked(socket_type descriptor)  {    bool interrupt = read_op_queue_.cancel_operations(descriptor);    interrupt = write_op_queue_.cancel_operations(descriptor) || interrupt;    interrupt = except_op_queue_.cancel_operations(descriptor) || interrupt;    if (interrupt)      interrupter_.interrupt();  }  // Clean up operations and timers. We must not hold the lock since the  // destructors may make calls back into this reactor. We make a copy of the  // vector of timer queues since the original may be modified while the lock  // is not held.  void cleanup_operations_and_timers(      asio::detail::mutex::scoped_lock& lock)  {    timer_queues_for_cleanup_ = timer_queues_;    lock.unlock();    read_op_queue_.cleanup_operations();    write_op_queue_.cleanup_operations();    except_op_queue_.cleanup_operations();    for (std::size_t i = 0; i < timer_queues_for_cleanup_.size(); ++i)      timer_queues_for_cleanup_[i]->cleanup_timers();  }  // Mutex to protect access to internal data.  asio::detail::mutex mutex_;  // The kqueue file descriptor.  int kqueue_fd_;  // Whether the kqueue wait call is currently in progress  bool wait_in_progress_;  // The interrupter is used to break a blocking kevent call.  select_interrupter interrupter_;  // The queue of read operations.  reactor_op_queue<socket_type> read_op_queue_;  // The queue of write operations.  reactor_op_queue<socket_type> write_op_queue_;  // The queue of except operations.  reactor_op_queue<socket_type> except_op_queue_;  // The timer queues.  std::vector<timer_queue_base*> timer_queues_;  // A copy of the timer queues, used when cleaning up timers. The copy is  // stored as a class data member to avoid unnecessary memory allocation.  std::vector<timer_queue_base*> timer_queues_for_cleanup_;  // The descriptors that are pending cancellation.  std::vector<socket_type> pending_cancellations_;  // Does the reactor loop thread need to stop.  bool stop_thread_;  // The thread that is running the reactor loop.  asio::detail::thread* thread_;  // Whether the service has been shut down.  bool shutdown_;};} // namespace detail} // namespace asio#endif // defined(ASIO_HAS_KQUEUE)#include "asio/detail/pop_options.hpp"#endif // ASIO_DETAIL_KQUEUE_REACTOR_HPP

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -