📄 kqueue_reactor.hpp
字号:
// Cancel the timer associated with the given token. Returns the number of // handlers that have been posted or dispatched. template <typename Time_Traits> std::size_t cancel_timer(timer_queue<Time_Traits>& timer_queue, void* token) { asio::detail::mutex::scoped_lock lock(mutex_); std::size_t n = timer_queue.cancel_timer(token); if (n > 0) interrupter_.interrupt(); return n; }private: friend class task_io_service<kqueue_reactor<Own_Thread> >; // Run the kqueue loop. void run(bool block) { asio::detail::mutex::scoped_lock lock(mutex_); // Dispatch any operation cancellations that were made while the select // loop was not running. read_op_queue_.dispatch_cancellations(); write_op_queue_.dispatch_cancellations(); except_op_queue_.dispatch_cancellations(); for (std::size_t i = 0; i < timer_queues_.size(); ++i) timer_queues_[i]->dispatch_cancellations(); // Check if the thread is supposed to stop. if (stop_thread_) { cleanup_operations_and_timers(lock); return; } // We can return immediately if there's no work to do and the reactor is // not supposed to block. if (!block && read_op_queue_.empty() && write_op_queue_.empty() && except_op_queue_.empty() && all_timer_queues_are_empty()) { cleanup_operations_and_timers(lock); return; } // Determine how long to block while waiting for events. timespec timeout_buf = { 0, 0 }; timespec* timeout = block ? get_timeout(timeout_buf) : &timeout_buf; wait_in_progress_ = true; lock.unlock(); // Block on the kqueue descriptor. struct kevent events[128]; int num_events = kevent(kqueue_fd_, 0, 0, events, 128, timeout); lock.lock(); wait_in_progress_ = false; // Block signals while dispatching operations. asio::detail::signal_blocker sb; // Dispatch the waiting events. for (int i = 0; i < num_events; ++i) { int descriptor = events[i].ident; if (descriptor == interrupter_.read_descriptor()) { interrupter_.reset(); } else if (events[i].filter == EVFILT_READ) { // Dispatch operations associated with the descriptor. bool more_reads = false; bool more_except = false; if (events[i].flags & EV_ERROR) { asio::error_code error( events[i].data, asio::error::get_system_category()); except_op_queue_.dispatch_all_operations(descriptor, error); read_op_queue_.dispatch_all_operations(descriptor, error); } else if (events[i].flags & EV_OOBAND) { asio::error_code error; more_except = except_op_queue_.dispatch_operation(descriptor, error); if (events[i].data > 0) more_reads = read_op_queue_.dispatch_operation(descriptor, error); else more_reads = read_op_queue_.has_operation(descriptor); } else { asio::error_code error; more_reads = read_op_queue_.dispatch_operation(descriptor, error); more_except = except_op_queue_.has_operation(descriptor); } // Update the descriptor in the kqueue. struct kevent event; if (more_reads) EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, 0, 0, 0); else if (more_except) EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, EV_OOBAND, 0, 0); else EV_SET(&event, descriptor, EVFILT_READ, EV_DELETE, 0, 0, 0); if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1) { asio::error_code error(errno, asio::error::get_system_category()); except_op_queue_.dispatch_all_operations(descriptor, error); read_op_queue_.dispatch_all_operations(descriptor, error); } } else if (events[i].filter == EVFILT_WRITE) { // Dispatch operations associated with the descriptor. bool more_writes = false; if (events[i].flags & EV_ERROR) { asio::error_code error( events[i].data, asio::error::get_system_category()); write_op_queue_.dispatch_all_operations(descriptor, error); } else { asio::error_code error; more_writes = write_op_queue_.dispatch_operation(descriptor, error); } // Update the descriptor in the kqueue. struct kevent event; if (more_writes) EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD, 0, 0, 0); else EV_SET(&event, descriptor, EVFILT_WRITE, EV_DELETE, 0, 0, 0); if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1) { asio::error_code error(errno, asio::error::get_system_category()); write_op_queue_.dispatch_all_operations(descriptor, error); } } } read_op_queue_.dispatch_cancellations(); write_op_queue_.dispatch_cancellations(); except_op_queue_.dispatch_cancellations(); for (std::size_t i = 0; i < timer_queues_.size(); ++i) { timer_queues_[i]->dispatch_timers(); timer_queues_[i]->dispatch_cancellations(); } // Issue any pending cancellations. for (std::size_t i = 0; i < pending_cancellations_.size(); ++i) cancel_ops_unlocked(pending_cancellations_[i]); pending_cancellations_.clear(); cleanup_operations_and_timers(lock); } // Run the select loop in the thread. void run_thread() { asio::detail::mutex::scoped_lock lock(mutex_); while (!stop_thread_) { lock.unlock(); run(true); lock.lock(); } } // Entry point for the select loop thread. static void call_run_thread(kqueue_reactor* reactor) { reactor->run_thread(); } // Interrupt the select loop. void interrupt() { interrupter_.interrupt(); } // Create the kqueue file descriptor. Throws an exception if the descriptor // cannot be created. static int do_kqueue_create() { int fd = kqueue(); if (fd == -1) { boost::throw_exception( asio::system_error( asio::error_code(errno, asio::error::get_system_category()), "kqueue")); } return fd; } // Check if all timer queues are empty. bool all_timer_queues_are_empty() const { for (std::size_t i = 0; i < timer_queues_.size(); ++i) if (!timer_queues_[i]->empty()) return false; return true; } // Get the timeout value for the kevent call. timespec* get_timeout(timespec& ts) { if (all_timer_queues_are_empty()) return 0; // By default we will wait no longer than 5 minutes. This will ensure that // any changes to the system clock are detected after no longer than this. boost::posix_time::time_duration minimum_wait_duration = boost::posix_time::minutes(5); for (std::size_t i = 0; i < timer_queues_.size(); ++i) { boost::posix_time::time_duration wait_duration = timer_queues_[i]->wait_duration(); if (wait_duration < minimum_wait_duration) minimum_wait_duration = wait_duration; } if (minimum_wait_duration > boost::posix_time::time_duration()) { ts.tv_sec = minimum_wait_duration.total_seconds(); ts.tv_nsec = minimum_wait_duration.total_nanoseconds() % 1000000000; } else { ts.tv_sec = 0; ts.tv_nsec = 0; } return &ts; } // Cancel all operations associated with the given descriptor. The do_cancel // function of the handler objects will be invoked. This function does not // acquire the kqueue_reactor's mutex. void cancel_ops_unlocked(socket_type descriptor) { bool interrupt = read_op_queue_.cancel_operations(descriptor); interrupt = write_op_queue_.cancel_operations(descriptor) || interrupt; interrupt = except_op_queue_.cancel_operations(descriptor) || interrupt; if (interrupt) interrupter_.interrupt(); } // Clean up operations and timers. We must not hold the lock since the // destructors may make calls back into this reactor. We make a copy of the // vector of timer queues since the original may be modified while the lock // is not held. void cleanup_operations_and_timers( asio::detail::mutex::scoped_lock& lock) { timer_queues_for_cleanup_ = timer_queues_; lock.unlock(); read_op_queue_.cleanup_operations(); write_op_queue_.cleanup_operations(); except_op_queue_.cleanup_operations(); for (std::size_t i = 0; i < timer_queues_for_cleanup_.size(); ++i) timer_queues_for_cleanup_[i]->cleanup_timers(); } // Mutex to protect access to internal data. asio::detail::mutex mutex_; // The kqueue file descriptor. int kqueue_fd_; // Whether the kqueue wait call is currently in progress bool wait_in_progress_; // The interrupter is used to break a blocking kevent call. select_interrupter interrupter_; // The queue of read operations. reactor_op_queue<socket_type> read_op_queue_; // The queue of write operations. reactor_op_queue<socket_type> write_op_queue_; // The queue of except operations. reactor_op_queue<socket_type> except_op_queue_; // The timer queues. std::vector<timer_queue_base*> timer_queues_; // A copy of the timer queues, used when cleaning up timers. The copy is // stored as a class data member to avoid unnecessary memory allocation. std::vector<timer_queue_base*> timer_queues_for_cleanup_; // The descriptors that are pending cancellation. std::vector<socket_type> pending_cancellations_; // Does the reactor loop thread need to stop. bool stop_thread_; // The thread that is running the reactor loop. asio::detail::thread* thread_; // Whether the service has been shut down. bool shutdown_;};} // namespace detail} // namespace asio#endif // defined(ASIO_HAS_KQUEUE)#include "asio/detail/pop_options.hpp"#endif // ASIO_DETAIL_KQUEUE_REACTOR_HPP
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -