📄 新建 文本文档 (3).txt
字号:
附录1:Dijkstra算法程序
function [S,D]=dijk2(W,i,m)
% 图与网络论中求最短路径的Dijkstra算法M函数
%格式[S,D]=minroute(i,m,W)
% i为最短路径的起始点,m为图顶点数,W为图的带权邻接矩阵,
%不构成边的两顶点之间的权用inf表示。显示结果为:S的每一列从上到下记录了从始点到终点的最短路径所经顶点的序号;
% D是一行向量,记录了S中所示路径大小;
dd=[ ];
tt=[ ];
ss=[ ];
ss(1,1)=i;
V=1:m;
V(i)=[ ];
dd=[0;i];
% dd的第二行是每次求出的最短路径的终点,第一行是最短路径的值
kk=2;
[mdd,ndd]=size(dd);
while ~isempty(V)
[tmpd,j]=min(W(i,V));
tmpj=V(j);
for k=2:ndd
[tmp1,jj]=min(dd(1,k)+W(dd(2,k),V));
tmp2=V(jj);
tt(k-1,:)=[tmp1,tmp2,jj];
end
tmp=[tmpd,tmpj,j;tt];
[tmp3,tmp4]=min(tmp( :,1));
if tmp3==tmpd
ss(1:2,kk)=[i;tmp(tmp4,2)];
else
tmp5=find(ss(:,tmp4)~=0);
tmp6=length(tmp5);
if dd(2,tmp4)==ss(tmp6,tmp4)
ss(1:tmp6+1,kk)=[ss(tmp5,tmp4);tmp(tmp4,2)];
else
ss(1:3,kk)=[ss(2,tmp4);tmp(tmp4,2)];
end
end
dd=[dd,[tmp3;tmp(tmp4,2)]];
V(tmp(tmp4,3))=[];
[mdd,ndd]=size(dd);
kk=kk+1;
end
S=ss;
D=dd(1,:);
附录2:蚁群算法解决单旅行商问题的程序
function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)
%%=========================================================================
%% ACATSP.m
%% Ant Colony Algorithm for Traveling Salesman Problem
%% ChengAihua,PLA Information Engineering University,ZhengZhou,China
%% Email:aihuacheng@gmail.com
%% All rights reserved
%%-------------------------------------------------------------------------
%% 主要符号说明
%% C n个节点的邻接矩阵
%% NC_max 最大迭代次数
%% m 蚂蚁个数
%% Alpha 表征信息素重要程度的参数
%% Beta 表征启发式因子重要程度的参数
%% Rho 信息素蒸发系数
%% Q 信息素增加强度系数
%% R_best 各代最佳路线
%% L_best 各代最佳路线的长度
%%=========================================================================
n=size(C,1);
D=C;%赋权值
Eta=1./D;
Tau=ones(n,n);
Tabu=zeros(m,n);
NC=1;
R_best=zeros(NC_max,n);
L_best=inf.*ones(NC_max,1);
L_ave=zeros(NC_max,1);
while NC<=NC_max
Randpos=[];
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))';
for j=2:n
for i=1:m
visited=Tabu(i,1:(j-1));
J=zeros(1,(n-j+1));
P=J;
Jc=1;
for k=1:n
if length(find(visited==k))==0
J(Jc)=k;
Jc=Jc+1;
end
end
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
Pcum=cumsum(P);
Select=find(Pcum>=rand);
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
if NC>=2
Tabu(1,:)=R_best(NC-1,:);
end
L=zeros(m,1);
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1));
end
L(i)=L(i)+D(R(n),R(1));
end
L_best(NC)=min(L);
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:);
L_ave(NC)=mean(L);
NC=NC+1;
if mod(NC,50)==0
NC
end
Delta_Tau=zeros(n,n);
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
end
Tau=(1-Rho).*Tau+Delta_Tau;
Tabu=zeros(m,n);
end
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:)
Shortest_Length=L_best(Pos(1))
附录3:蚁群算法解决带有约束条件的多旅行商问题的程序
function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP_dev(C,NC_max,m,Alpha,Beta,Rho,Q)
st=[8 13 6 9 7 15 10 5 12 9];
n=size(C,1);
D=C;
Eta=1./D;
Tau=ones(n,n);
Tabu=zeros(m,n);
NC=1;
R_best=zeros(NC_max,n);
L_best=inf.*ones(NC_max,1);
L_ave=zeros(NC_max,1);
while NC<=NC_max
Randpos=[];
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))';
for j=2:n
for i=1:m
visited=Tabu(i,1:(j-1));
J=zeros(1,(n-j+1));
P=J;
Jc=1;
for k=1:n
if length(find(visited==k))==0
J(Jc)=k;
Jc=Jc+1;
end
end
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
Pcum=cumsum(P);
Select=find(Pcum>=rand);
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
if NC>=2
Tabu(1,:)=R_best(NC-1,:);
end
L=zeros(m,1);
for i=1:m
R=Tabu(i,:);
R(find(R==11))=1;
uu=find(R==1);
a1=[];
for l=uu(1):uu(2)
a1=[a1 R(l)];
end
a2=[];
for l=uu(2):(uu(1)+11)
if mod(l,11)~=0
a2=[a2 R(mod(l,11))];
else
a2=[a2 R(mod(l,11)+11)];
end
end
L1=0;
L2=0;
for j=1:length(a1)-1
L1=L1+D(a1(j),a1(j+1));
end
for j=1:length(a2)-1
L2=L2+D(a2(j),a2(j+1));
end
pp1=0;
pp2=0;
if length(a1)~=2&&length(a2)~=2
for j=2:length(a1)-1
pp1=pp1+st(a1(j));
end
for j=2:length(a2)-1
pp2=pp2+st(a2(j));
end
pp2=pp2+4;
pp1=pp1+4;
cc1=max(pp1-50-4,0);
cc2=max(pp2-50-4,0);
L(i)=L1+L2+1e8*(cc1+cc2);
else
L(i)=1e10;
end
end
L_best(NC)=min(L);
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:);
L_ave(NC)=mean(L);
NC=NC+1;
if mod(NC,50)==0
NC
end
Delta_Tau=zeros(n,n);
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
end
Tau=(1-Rho).*Tau+Delta_Tau;
Tabu=zeros(m,n);
end
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:)
Shortest_Length=L_best(Pos(1))
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -