⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 qtransform.cpp

📁 奇趣公司比较新的qt/emd版本
💻 CPP
📖 第 1 页 / 共 3 页
字号:
/******************************************************************************** Copyright (C) 1992-2007 Trolltech ASA. All rights reserved.**** This file is part of the QtGui module of the Qt Toolkit.**** This file may be used under the terms of the GNU General Public** License version 2.0 as published by the Free Software Foundation** and appearing in the file LICENSE.GPL included in the packaging of** this file.  Please review the following information to ensure GNU** General Public Licensing requirements will be met:** http://trolltech.com/products/qt/licenses/licensing/opensource/**** If you are unsure which license is appropriate for your use, please** review the following information:** http://trolltech.com/products/qt/licenses/licensing/licensingoverview** or contact the sales department at sales@trolltech.com.**** In addition, as a special exception, Trolltech gives you certain** additional rights. These rights are described in the Trolltech GPL** Exception version 1.0, which can be found at** http://www.trolltech.com/products/qt/gplexception/ and in the file** GPL_EXCEPTION.txt in this package.**** In addition, as a special exception, Trolltech, as the sole copyright** holder for Qt Designer, grants users of the Qt/Eclipse Integration** plug-in the right for the Qt/Eclipse Integration to link to** functionality provided by Qt Designer and its related libraries.**** Trolltech reserves all rights not expressly granted herein.**** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.******************************************************************************/#include "qtransform.h"#include "qdatastream.h"#include "qdebug.h"#include "qmath_p.h"#include "qmatrix.h"#include "qregion.h"#include "qpainterpath.h"#include "qvariant.h"#include <math.h>#define MAPDOUBLE(x, y, nx, ny) \{ \    fx = x; \    fy = y; \    nx = affine._m11*fx + affine._m21*fy + affine._dx; \    ny = affine._m12*fx + affine._m22*fy + affine._dy; \    if (!isAffine()) { \        qreal w = m_13*fx + m_23*fy + m_33; \        w = 1/w; \        nx *= w; \        ny *= w; \    }\}#define MAPINT(x, y, nx, ny) \{ \    fx = x; \    fy = y; \    nx = int(affine._m11*fx + affine._m21*fy + affine._dx); \    ny = int(affine._m12*fx + affine._m22*fy + affine._dy); \    if (!isAffine()) { \        qreal w = m_13*fx + m_23*fy + m_33; \        w = 1/w; \        nx = int(nx*w); \        ny = int(ny*w); \    }\}/*!    \class QTransform    \brief The QTransform class specifies 2D transformations of a coordinate system.    \since 4.3    \ingroup multimedia    A transformation specifies how to translate, scale, shear, rotate    or project the coordinate system, and is typically used when    rendering graphics.    QTransform differs from QMatrix in that it is a true 3x3 matrix,    allowing perpective transformations. QTransform's toAffine()    method allows casting QTransform to QMatrix. If a perspective    transformation has been specified on the matrix, then the    conversion to an affine QMatrix will cause loss of data.    QTransform is the recommended transformation class in Qt.    A QTransform object can be built using the setMatrix(), scale(),    rotate(), translate() and shear() functions.  Alternatively, it    can be built by applying \l {QTransform#Basic Matrix    Operations}{basic matrix operations}. The matrix can also be    defined when constructed, and it can be reset to the identity    matrix (the default) using the reset() function.    The QTransform class supports mapping of graphic primitives: A given    point, line, polygon, region, or painter path can be mapped to the    coordinate system defined by \e this matrix using the map()    function. In case of a rectangle, its coordinates can be    transformed using the mapRect() function. A rectangle can also be    transformed into a \e polygon (mapped to the coordinate system    defined by \e this matrix), using the mapToPolygon() function.    QTransform provides the isIdentity() function which returns true if    the matrix is the identity matrix, and the isInvertible() function    which returns true if the matrix is non-singular (i.e. AB = BA =    I). The inverted() function returns an inverted copy of \e this    matrix if it is invertible (otherwise it returns the identity    matrix). In addition, QTransform provides the det() function    returning the matrix's determinant.    Finally, the QTransform class supports matrix multiplication, and    objects of the class can be streamed as well as compared.    \tableofcontents    \section1 Rendering Graphics    When rendering graphics, the matrix defines the transformations    but the actual transformation is performed by the drawing routines    in QPainter.    By default, QPainter operates on the associated device's own    coordinate system.  The standard coordinate system of a    QPaintDevice has its origin located at the top-left position. The    \e x values increase to the right; \e y values increase    downward. For a complete description, see the \l {The Coordinate    System}{coordinate system} documentation.    QPainter has functions to translate, scale, shear and rotate the    coordinate system without using a QTransform. For example:    \table 100%    \row    \o \inlineimage qtransform-simpletransformation.png    \o    \quotefromfile snippets/transform/main.cpp    \skipto SimpleTransformation::paintEvent    \printuntil }    \endtable    Although these functions are very convenient, it can be more    efficient to build a QTransform and call QPainter::setTransform() if you    want to perform more than a single transform operation. For    example:    \table 100%    \row    \o \inlineimage qtransform-combinedtransformation.png    \o    \quotefromfile snippets/transform/main.cpp    \skipto CombinedTransformation::paintEvent    \printuntil }    \endtable    \section1 Basic Matrix Operations    \image qmatrix-representation.png    A QTransform object contains a 3 x 3 matrix.  The \c dx and \c dy    elements specify horizontal and vertical translation. The \c m11    and \c m22 elements specify horizontal and vertical scaling. And    finally, the \c m21 and \c m12 elements specify horizontal and    vertical \e shearing.    QTransform transforms a point in the plane to another point using the    following formulas:    \code        x' = m11*x + m21*y + dx        y' = m22*y + m12*x + dy    \endcode    The point \e (x, y) is the original point, and \e (x', y') is the    transformed point. \e (x', y') can be transformed back to \e (x,    y) by performing the same operation on the inverted() matrix.    The various matrix elements can be set when constructing the    matrix, or by using the setMatrix() function later on. They also    be manipulated using the translate(), rotate(), scale() and    shear() convenience functions, The currently set values can be    retrieved using the m11(), m12(), m21(), m22(), dx() and dy()    functions.    Translation is the simplest transformation. Setting \c dx and \c    dy will move the coordinate system \c dx units along the X axis    and \c dy units along the Y axis.  Scaling can be done by setting    \c m11 and \c m22. For example, setting \c m11 to 2 and \c m22 to    1.5 will double the height and increase the width by 50%.  The    identity matrix has \c m11 and \c m22 set to 1 (all others are set    to 0) mapping a point to itself. Shearing is controlled by \c m12    and \c m21. Setting these elements to values different from zero    will twist the coordinate system. Rotation is achieved by    carefully setting both the shearing factors and the scaling    factors.    Here's the combined transformations example using basic matrix    operations:    \table 100%    \row    \o \inlineimage qtransform-combinedtransformation2.png    \o    \quotefromfile snippets/transform/main.cpp    \skipto BasicOperations::paintEvent    \printuntil }    \endtable    \sa QPainter, {The Coordinate System}, {demos/affine}{Affine    Transformations Demo}, {Transformations Example}*//*!    \enum QTransform::TransformationType    \value TxNone    \value TxTranslate    \value TxScale    \value TxRotate    \value TxShear    \value TxProject*//*!    Constructs an identity matrix.    All elements are set to zero except \c m11 and \c m22 (specifying    the scale) and \c m13 which are set to 1.    \sa reset()*/QTransform::QTransform()    : m_13(0), m_23(0), m_33(1)    , m_type(TxNone)    , m_dirty(TxNone){}/*!    Constructs a matrix with the elements, \a h11, \a h12, \a h13,    \a h21, \a h22, \a h23, \a h31, \a h32, \a h33.    \sa setMatrix()*/QTransform::QTransform(qreal h11, qreal h12, qreal h13,                       qreal h21, qreal h22, qreal h23,                       qreal h31, qreal h32, qreal h33)    : affine(h11, h12, h21, h22, h31, h32),      m_13(h13), m_23(h23), m_33(h33)    , m_type(TxNone)    , m_dirty(TxProject){}/*!    Constructs a matrix with the elements, \a h11, \a h12, \a h21, \a    h22, \a dx and \a dy.    \sa setMatrix()*/QTransform::QTransform(qreal h11, qreal h12, qreal h21,                       qreal h22, qreal dx, qreal dy)    : affine(h11, h12, h21, h22, dx, dy),      m_13(0), m_23(0), m_33(1)    , m_type(TxNone)    , m_dirty(TxShear){}/*!    \fn QTransform::QTransform(const QMatrix &matrix)    Constructs a matrix that is a copy of the given \a matrix.    Note that the \c m13, \c m23, and \c m33 elements are set to 0, 0,    and 1 respectively. */QTransform::QTransform(const QMatrix &mtx)    : affine(mtx),      m_13(0), m_23(0), m_33(1)    , m_type(TxNone)    , m_dirty(TxShear){}/*!    Returns the adjoint of this matrix.*/QTransform QTransform::adjoint() const{    qreal h11, h12, h13,        h21, h22, h23,        h31, h32, h33;    h11 = affine._m22*m_33 - m_23*affine._dy;    h21 = m_23*affine._dx - affine._m21*m_33;    h31 = affine._m21*affine._dy - affine._m22*affine._dx;    h12 = m_13*affine._dy - affine._m12*m_33;    h22 = affine._m11*m_33 - m_13*affine._dx;    h32 = affine._m12*affine._dx - affine._m11*affine._dy;    h13 = affine._m12*m_23 - m_13*affine._m22;    h23 = m_13*affine._m21 - affine._m11*m_23;    h33 = affine._m11*affine._m22 - affine._m12*affine._m21;    //### not a huge fan of this simplification but    //    i'd like to keep m33 as 1.0    //return QTransform(h11, h12, h13,    //                  h21, h22, h23,    //                  h31, h32, h33);    h33 = 1/h33;    return QTransform(h11*h33, h12*h33, h13*h33,                      h21*h33, h22*h33, h23*h33,                      h31*h33, h32*h33, 1.0);}/*!    Returns the transpose of this matrix.*/QTransform QTransform::transposed() const{    return QTransform(affine._m11, affine._m21, affine._dx,                      affine._m12, affine._m22, affine._dy,                      m_13, m_23, m_33);}/*!    Returns an inverted copy of this matrix.    If the matrix is singular (not invertible), the returned matrix is    the identity matrix. If \a invertible is valid (i.e. not 0), its    value is set to true if the matrix is invertible, otherwise it is    set to false.    \sa isInvertible()*/QTransform QTransform::inverted(bool *invertible) const{    qreal det = determinant();    if (qFuzzyCompare(det, qreal(0.0))) {        if (invertible)            *invertible = false;        return QTransform();    }    if (invertible)        *invertible = true;    QTransform adjA = adjoint();    QTransform invert = adjA / det;    invert = QTransform(invert.m11()/invert.m33(), invert.m12()/invert.m33(), invert.m13()/invert.m33(),                        invert.m21()/invert.m33(), invert.m22()/invert.m33(), invert.m23()/invert.m33(),                        invert.m31()/invert.m33(), invert.m32()/invert.m33(), 1);    // inverting doesn't change the type    invert.m_type = m_type;    invert.m_dirty = m_dirty;    return invert;}/*!    Moves the coordinate system \a dx along the x axis and \a dy along    the y axis, and returns a reference to the matrix.    \sa setMatrix()*/QTransform & QTransform::translate(qreal dx, qreal dy){    if (type() != TxProject) {        affine._dx += dx*affine._m11 + dy*affine._m21;        affine._dy += dy*affine._m22 + dx*affine._m12;    } else {        QTransform translate;        translate.affine._dx = dx;        translate.affine._dy = dy;        *this = translate * *this;    }    m_dirty |= TxTranslate;    return *this;}/*!    Scales the coordinate system by \a sx horizontally and \a sy    vertically, and returns a reference to the matrix.    \sa setMatrix()*/QTransform & QTransform::scale(qreal sx, qreal sy){    if (type() != TxProject) {        affine._m11 *= sx;        affine._m12 *= sx;        affine._m21 *= sy;        affine._m22 *= sy;    } else {        QTransform scale;        scale.affine._m11 = sx;        scale.affine._m22 = sy;        *this = scale * *this;    }    m_dirty |= TxScale;    return *this;}/*!    Shears the coordinate system by \a sh horizontally and \a sv    vertically, and returns a reference to the matrix.    \sa setMatrix()*/QTransform & QTransform::shear(qreal sh, qreal sv){    if (type() != TxProject) {        qreal tm11 = sv*affine._m21;        qreal tm12 = sv*affine._m22;        qreal tm21 = sh*affine._m11;        qreal tm22 = sh*affine._m12;        affine._m11 += tm11;        affine._m12 += tm12;        affine._m21 += tm21;        affine._m22 += tm22;    } else {        QTransform shear;        shear.affine._m12 = sv;        shear.affine._m21 = sh;        *this = shear * *this;    }    m_dirty |= TxShear;    return *this;}const qreal deg2rad = qreal(0.017453292519943295769);        // pi/180const qreal inv_dist_to_plane = 1. / 1024.;/*!    \fn QTransform &QTransform::rotate(qreal angle, Qt::Axis axis)        Rotates the coordinate system counterclockwise by the given \a angle    about the specified \a axis and returns a reference to the matrix.    Note that if you apply a QTransform to a point defined in widget    coordinates, the direction of the rotation will be clockwise    because the y-axis points downwards.    The angle is specified in degrees.    \sa setMatrix()*/QTransform & QTransform::rotate(qreal a, Qt::Axis axis){    qreal sina = 0;    qreal cosa = 0;    if (a == 90. || a == -270.)        sina = 1.;    else if (a == 270. || a == -90.)        sina = -1.;    else if (a == 180.)        cosa = -1.;    else{        qreal b = deg2rad*a;          // convert to radians        sina = qSin(b);               // fast and convenient        cosa = qCos(b);    }    if (axis == Qt::ZAxis) {        if (type() != TxProject) {            qreal tm11 = cosa*affine._m11 + sina*affine._m21;            qreal tm12 = cosa*affine._m12 + sina*affine._m22;            qreal tm21 = -sina*affine._m11 + cosa*affine._m21;            qreal tm22 = -sina*affine._m12 + cosa*affine._m22;            affine._m11 = tm11; affine._m12 = tm12;            affine._m21 = tm21; affine._m22 = tm22;        } else {            QTransform result;            result.affine._m11 = cosa;            result.affine._m12 = sina;            result.affine._m22 = cosa;            result.affine._m21 = -sina;            *this = result * *this;        }        m_dirty |= TxRotate;    } else {        QTransform result;        if (axis == Qt::YAxis) {            result.affine._m11 = cosa;            result.m_13 = -sina * inv_dist_to_plane;        } else {            result.affine._m22 = cosa;            result.m_23 = -sina * inv_dist_to_plane;        }        m_dirty = TxProject;        *this = result * *this;    }    return *this;}/*!    \fn QTransform & QTransform::rotateRadians(qreal angle, Qt::Axis axis)        Rotates the coordinate system counterclockwise by the given \a angle    about the specified \a axis and returns a reference to the matrix.        Note that if you apply a QTransform to a point defined in widget    coordinates, the direction of the rotation will be clockwise    because the y-axis points downwards.    The angle is specified in radians.    \sa setMatrix()*/QTransform & QTransform::rotateRadians(qreal a, Qt::Axis axis){    qreal sina = qSin(a);    qreal cosa = qCos(a);    if (axis == Qt::ZAxis) {        if (type() != TxProject) {            qreal tm11 = cosa*affine._m11 + sina*affine._m21;            qreal tm12 = cosa*affine._m12 + sina*affine._m22;            qreal tm21 = -sina*affine._m11 + cosa*affine._m21;            qreal tm22 = -sina*affine._m12 + cosa*affine._m22;            affine._m11 = tm11; affine._m12 = tm12;            affine._m21 = tm21; affine._m22 = tm22;        } else {            QTransform result;            result.affine._m11 = cosa;            result.affine._m12 = sina;            result.affine._m22 = cosa;            result.affine._m21 = -sina;            *this = result * *this;        }        m_dirty |= TxRotate;    } else {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -