⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 qmatrix.cpp

📁 奇趣公司比较新的qt/emd版本
💻 CPP
📖 第 1 页 / 共 3 页
字号:
/******************************************************************************** Copyright (C) 1992-2007 Trolltech ASA. All rights reserved.**** This file is part of the QtGui module of the Qt Toolkit.**** This file may be used under the terms of the GNU General Public** License version 2.0 as published by the Free Software Foundation** and appearing in the file LICENSE.GPL included in the packaging of** this file.  Please review the following information to ensure GNU** General Public Licensing requirements will be met:** http://trolltech.com/products/qt/licenses/licensing/opensource/**** If you are unsure which license is appropriate for your use, please** review the following information:** http://trolltech.com/products/qt/licenses/licensing/licensingoverview** or contact the sales department at sales@trolltech.com.**** In addition, as a special exception, Trolltech gives you certain** additional rights. These rights are described in the Trolltech GPL** Exception version 1.0, which can be found at** http://www.trolltech.com/products/qt/gplexception/ and in the file** GPL_EXCEPTION.txt in this package.**** In addition, as a special exception, Trolltech, as the sole copyright** holder for Qt Designer, grants users of the Qt/Eclipse Integration** plug-in the right for the Qt/Eclipse Integration to link to** functionality provided by Qt Designer and its related libraries.**** Trolltech reserves all rights not expressly granted herein.**** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.******************************************************************************/#include "qdatastream.h"#include "qdebug.h"#include "qmath_p.h"#include "qmatrix.h"#include "qregion.h"#include "qpainterpath.h"#include "qvariant.h"#include <limits.h>/*!    \class QMatrix    \brief The QMatrix class specifies 2D transformations of a    coordinate system.    \ingroup multimedia    A matrix specifies how to translate, scale, shear or rotate the    coordinate system, and is typically used when rendering graphics.    A QMatrix object can be built using the setMatrix(), scale(),    rotate(), translate() and shear() functions.  Alternatively, it    can be built by applying \l {QMatrix#Basic Matrix    Operations}{basic matrix operations}. The matrix can also be    defined when constructed, and it can be reset to the identity    matrix (the default) using the reset() function.    The QMatrix class supports mapping of graphic primitives: A given    point, line, polygon, region, or painter path can be mapped to the    coordinate system defined by \e this matrix using the map()    function. In case of a rectangle, its coordinates can be    transformed using the mapRect() function. A rectangle can also be    transformed into a \e polygon (mapped to the coordinate system    defined by \e this matrix), using the mapToPolygon() function.    QMatrix provides the isIdentity() function which returns true if    the matrix is the identity matrix, and the isInvertible() function    which returns true if the matrix is non-singular (i.e. AB = BA =    I). The inverted() function returns an inverted copy of \e this    matrix if it is invertible (otherwise it returns the identity    matrix). In addition, QMatrix provides the det() function    returning the matrix's determinant.    Finally, the QMatrix class supports matrix multiplication, and    objects of the class can be streamed as well as compared.    \tableofcontents    \section1 Rendering Graphics    When rendering graphics, the matrix defines the transformations    but the actual transformation is performed by the drawing routines    in QPainter.    By default, QPainter operates on the associated device's own    coordinate system.  The standard coordinate system of a    QPaintDevice has its origin located at the top-left position. The    \e x values increase to the right; \e y values increase    downward. For a complete description, see the \l {The Coordinate    System}{coordinate system} documentation.    QPainter has functions to translate, scale, shear and rotate the    coordinate system without using a QMatrix. For example:    \table 100%    \row    \o \inlineimage qmatrix-simpletransformation.png    \o    \quotefromfile snippets/matrix/matrix.cpp    \skipto SimpleTransformation::paintEvent    \printuntil }    \endtable    Although these functions are very convenient, it can be more    efficient to build a QMatrix and call QPainter::setMatrix() if you    want to perform more than a single transform operation. For    example:    \table 100%    \row    \o \inlineimage qmatrix-combinedtransformation.png    \o    \quotefromfile snippets/matrix/matrix.cpp    \skipto CombinedTransformation::paintEvent    \printuntil }    \endtable    \section1 Basic Matrix Operations    \image qmatrix-representation.png    A QMatrix object contains a 3 x 3 matrix.  The \c dx and \c dy    elements specify horizontal and vertical translation. The \c m11    and \c m22 elements specify horizontal and vertical scaling. And    finally, the \c m21 and \c m12 elements specify horizontal and    vertical \e shearing.    QMatrix transforms a point in the plane to another point using the    following formulas:    \code        x' = m11*x + m21*y + dx        y' = m22*y + m12*x + dy    \endcode    The point \e (x, y) is the original point, and \e (x', y') is the    transformed point. \e (x', y') can be transformed back to \e (x,    y) by performing the same operation on the inverted() matrix.    The various matrix elements can be set when constructing the    matrix, or by using the setMatrix() function later on. They also    be manipulated using the translate(), rotate(), scale() and    shear() convenience functions, The currently set values can be    retrieved using the m11(), m12(), m21(), m22(), dx() and dy()    functions.    Translation is the simplest transformation. Setting \c dx and \c    dy will move the coordinate system \c dx units along the X axis    and \c dy units along the Y axis.  Scaling can be done by setting    \c m11 and \c m22. For example, setting \c m11 to 2 and \c m22 to    1.5 will double the height and increase the width by 50%.  The    identity matrix has \c m11 and \c m22 set to 1 (all others are set    to 0) mapping a point to itself. Shearing is controlled by \c m12    and \c m21. Setting these elements to values different from zero    will twist the coordinate system. Rotation is achieved by    carefully setting both the shearing factors and the scaling    factors.    Here's the combined transformations example using basic matrix    operations:    \table 100%    \row    \o \inlineimage qmatrix-combinedtransformation.png    \o    \quotefromfile snippets/matrix/matrix.cpp    \skipto BasicOperations::paintEvent    \printuntil }    \endtable    \sa QPainter, {The Coordinate System}, {demos/affine}{Affine    Transformations Demo}, {Transformations Example}*/// some defines to inline some code#define MAPDOUBLE(x, y, nx, ny) \{ \    qreal fx = x; \    qreal fy = y; \    nx = _m11*fx + _m21*fy + _dx; \    ny = _m12*fx + _m22*fy + _dy; \}#define MAPINT(x, y, nx, ny) \{ \    qreal fx = x; \    qreal fy = y; \    nx = qRound(_m11*fx + _m21*fy + _dx); \    ny = qRound(_m12*fx + _m22*fy + _dy); \}/*****************************************************************************  QMatrix member functions *****************************************************************************//*!    Constructs an identity matrix.    All elements are set to zero except \c m11 and \c m22 (specifying    the scale), which are set to 1.    \sa reset()*/QMatrix::QMatrix(){    _m11 = _m22 = 1.0;    _m12 = _m21 = _dx = _dy = 0.0;}/*!    Constructs a matrix with the elements, \a m11, \a m12, \a m21, \a    m22, \a dx and \a dy.    \sa setMatrix()*/QMatrix::QMatrix(qreal m11, qreal m12, qreal m21, qreal m22,                    qreal dx, qreal dy){    _m11 = m11;         _m12 = m12;    _m21 = m21;         _m22 = m22;    _dx         = dx;         _dy  = dy;}/*!     Constructs a matrix that is a copy of the given \a matrix. */QMatrix::QMatrix(const QMatrix &matrix){    *this = matrix;}/*!    Sets the matrix elements to the specified values, \a m11, \a m12,    \a m21, \a m22, \a dx and \a dy.    Note that this function replaces the previous values. QMatrix    provide the translate(), rotate(), scale() and shear() convenience    functions to manipulate the various matrix elements based on the    currently defined coordinate system.    \sa QMatrix()*/void QMatrix::setMatrix(qreal m11, qreal m12, qreal m21, qreal m22,                          qreal dx, qreal dy){    _m11 = m11;         _m12 = m12;    _m21 = m21;         _m22 = m22;    _dx         = dx;         _dy  = dy;}/*!    \fn qreal QMatrix::m11() const    Returns the horizontal scaling factor.    \sa scale(), {QMatrix#Basic Matrix Operations}{Basic Matrix    Operations}*//*!    \fn qreal QMatrix::m12() const    Returns the vertical shearing factor.    \sa shear(), {QMatrix#Basic Matrix Operations}{Basic Matrix    Operations}*//*!    \fn qreal QMatrix::m21() const    Returns the horizontal shearing factor.    \sa shear(), {QMatrix#Basic Matrix Operations}{Basic Matrix    Operations}*//*!    \fn qreal QMatrix::m22() const    Returns the vertical scaling factor.    \sa scale(), {QMatrix#Basic Matrix Operations}{Basic Matrix    Operations}*//*!    \fn qreal QMatrix::dx() const    Returns the horizontal translation factor.    \sa translate(), {QMatrix#Basic Matrix Operations}{Basic Matrix    Operations}*//*!    \fn qreal QMatrix::dy() const    Returns the vertical translation factor.    \sa translate(), {QMatrix#Basic Matrix Operations}{Basic Matrix    Operations}*//*!    Maps the given coordinates \a x and \a y into the coordinate    system defined by this matrix. The resulting values are put in *\a    tx and *\a ty, respectively.    The coordinates are transformed using the following formulas:    \code        x' = m11*x + m21*y + dx        y' = m22*y + m12*x + dy    \endcode    The point (x, y) is the original point, and (x', y') is the    transformed point.    \sa {QMatrix#Basic Matrix Operations}{Basic Matrix Operations}*/void QMatrix::map(qreal x, qreal y, qreal *tx, qreal *ty) const{    MAPDOUBLE(x, y, *tx, *ty);}/*!    \overload    Maps the given coordinates \a x and \a y into the coordinate    system defined by this matrix. The resulting values are put in *\a    tx and *\a ty, respectively. Note that the transformed coordinates    are rounded to the nearest integer.*/void QMatrix::map(int x, int y, int *tx, int *ty) const{    MAPINT(x, y, *tx, *ty);}QRect QMatrix::mapRect(const QRect &rect) const{    QRect result;    if (_m12 == 0.0F && _m21 == 0.0F) {        int x = qRound(_m11*rect.x() + _dx);        int y = qRound(_m22*rect.y() + _dy);        int w = qRound(_m11*rect.width());        int h = qRound(_m22*rect.height());        if (w < 0) {            w = -w;            x -= w;        }        if (h < 0) {            h = -h;            y -= h;        }        result = QRect(x, y, w, h);    } else {        // see mapToPolygon for explanations of the algorithm.        qreal x0, y0;        qreal x, y;        MAPDOUBLE(rect.left(), rect.top(), x0, y0);        qreal xmin = x0;        qreal ymin = y0;        qreal xmax = x0;        qreal ymax = y0;        MAPDOUBLE(rect.right() + 1, rect.top(), x, y);        xmin = qMin(xmin, x);        ymin = qMin(ymin, y);        xmax = qMax(xmax, x);        ymax = qMax(ymax, y);        MAPDOUBLE(rect.right() + 1, rect.bottom() + 1, x, y);        xmin = qMin(xmin, x);        ymin = qMin(ymin, y);        xmax = qMax(xmax, x);        ymax = qMax(ymax, y);        MAPDOUBLE(rect.left(), rect.bottom() + 1, x, y);        xmin = qMin(xmin, x);        ymin = qMin(ymin, y);        xmax = qMax(xmax, x);        ymax = qMax(ymax, y);        qreal w = xmax - xmin;        qreal h = ymax - ymin;        xmin -= (xmin - x0) / w;        ymin -= (ymin - y0) / h;        xmax -= (xmax - x0) / w;        ymax -= (ymax - y0) / h;        result = QRect(qRound(xmin), qRound(ymin), qRound(xmax)-qRound(xmin)+1, qRound(ymax)-qRound(ymin)+1);    }    return result;}/*!    \fn QRectF QMatrix::mapRect(const QRectF &rectangle) const    Creates and returns a QRectF object that is a copy of the given \a    rectangle, mapped into the coordinate system defined by this    matrix.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -