📄 izde.m
字号:
% [Z, U, X] = izde(G,EPP);
%
% Inputs: G - system matrix in mu-tools format.
% EPP - tolerance, see below, default value EPS.
% Outputs: Z - zeros.
% U - input zero directions, stored as column vectors.
% X - state directions, stored as column vectors.
% Each column X(:,i) and U(:,i) corresponds to the zeros Z(i).
%
% This is a modifaction of szeros.m written by Kjetil Havre
%
% This Input-Zero-Direction-"through genaralized Eigenvalue" decomposition
% IZDE function is a modification of the szeros function contained in mu
% - toolbox. The modification consists of returning the input zero
% directions and the state zero directions in addition to the zeros. The
% input zero directions u are defined as:
% G(z)*u = 0,
% where s = z is a zero of G(s). This is done by solving the generalized
% eigenvalue problem:
%
% | A-Iz | B | * | x | = | 0 |
% |------------| |---| |---|
% | C | D | | u | | 0 |
%
% IZDE finds the transmission zeros z of a SYSTEM matrix. Occasionally,
% large zeros are included which may actually be at infinity. Solving
% for the transmission zeros of a system involves two generalized eigen-
% value problems. EPP (optional) defines if the difference between two
% generalize eigenvalues is small. IZDE also finds the input u and the
% state x directions of the zeros.
%
% The input zero directions are stored as column vectors in U, and each
% of the columns are normalized. The state zero directions are stored as
% columns in X. The degree of freedom to normalize the generalized eigen-
% vector is used to normalize the u part. So the length of x is not equal
% to one. Each column in U and X corresponds to the element in Z with
% same place.
%
% For systems with more inputs than outputs the input zero direction
% is not a complete basis for the nullspace of G(z).
% Zeros with multiplicity greater than one (rare cases which may
% occure in non-minimal realizations), may (not sure) cause wrong
% directions.
%
% Comments, corrections and malfunctions, can be e-mailed to:
% havre@kjemi.unit.no or skoge@kjemi.unit.no
%
% See also: EIG, SZEROS, OZDE and SPOLES.
% Algorithm based on Laub & Moore 1978 paper, Automatica
%
% Note that when the number of inputs is larger than the number of outputs,
% the input zero direction is not complete. A bit clearer: If z is a zero of
% a non-square plant with number of inputs greater than number of outputs,
% the zero direction is not a line but a surface. As an example, consider
% G(s) with dimensions 2x3 (2 rows and 3 columns). Let s=z be a zero of
% G(s) such that G(z)*u = [0;0]; Since s=z is a zero then the rank of
% G(z) has to be less than the normal rank of G(s), which at maximum can
% be 2. This implies that rank of G(z) must be less than 2.
% u is element in the three dimensional field of real numbers. Since the
% rank of G(z) is maximum one the zero direction is a actually a subspace
% in this three dimensional field of real numbers given by two basis
% vectors. Since this function only gives one zero direction for a given
% zero this direction does not describe the input zero space completely.
% Two basis vectors are requiered.
%
% Modification for square systems was made by: Kjetil Havre 14/5-1995.
% Modification for non square systems was made by: Kjetil Havre 14/5-1995.
% Inclusion of state directions was made by: Kjetil Havre 14/5-1995.
% Modified so that first element of U(:,i) is real: Kjetil Havre 3/2-1996.
% Copyright 1996-2003 Sigurd Skogestad & Ian Postlethwaite
% $Id: izde.m,v 1.2 2004/01/19 14:52:11 aske Exp $
function [Z, U, X] = izde(sys,epp)
if nargin < 1
disp('usage: [Z,Y,X] = ozde(G) ')
return
end
if nargin == 1
epp = eps;
end
[ny,nu,nx]=size(sys);
if class(sys) == 'tf'|'ss'|'zpk'|'frd'
[a,b,c,d] = ssdata(sys);
if nx == 0
disp('SYSTEM has no states')
end
sysu = [a b; c d];
% find generalized eigenvalues of a square system matrix
if ny == nu
x = zeros(nx+nu,nx+nu);
x(1:nx,1:nx) = eye(nx);
[vech, ev] = eig(sysu, x);
z = diag(ev); % Extract the eigenvalues.
kc=0; % Counter for eigenvalues.
for k=1:max(size(z)),
logic = ~isnan(z(k)) & finite(z(k));
if logic
kc= kc+1;
Z(kc,1) = z(k);
vech2(:,kc) = vech(:,k);
end
end
% Split x and u.
vx = vech2(1:nx, : );
vu = vech2(nx+1:nx+nu,:);
% Normalize columns.
[nvr, nvc] = size( vu );
for i=1:nvc,
nrmu = norm(vu(:,i));
if nrmu > 1000*epp
vx(:,i) = vx(:,i)/nrmu;
vu(:,i) = vu(:,i)/nrmu;
else
vu(:,i) = zeros(nu,1);
end
Inz = find( abs(vu(:,i)) > 1000*epp );
if isempty(Inz) == 0
U(:,i) = vu(:,i) * exp( -angle(vu(Inz(1),i))*sqrt(-1) );
X(:,i) = vx(:,i) * exp( -angle(vu(Inz(1),i))*sqrt(-1) );
else
X(:,i) = vx(:,i);
Y(:,i) = vu(:,i);
end
end
else % Non-square systems
nrm = norm(sysu,1);
if nu < ny
x1 = [ sysu nrm*(rand(nx+ny,ny-nu)-.5)];
x2 = [ sysu nrm*(rand(nx+ny,ny-nu)-.5)];
else
x1 = [ sysu; nrm*(rand(nu-ny,nx+nu)-.5)];
x2 = [ sysu; nrm*(rand(nu-ny,nx+nu)-.5)];
end
[x]= zeros(size(x1));
x(1:nx,1:nx) = eye(nx);
[v1h z1h] = eig(x1,x); % Compute the genaralized eigenvalues
[v2h z2h] = eig(x2,x); % for the two augumented systems.
z1h2 = diag( z1h );
z2h2 = diag( z2h );
z2 = z2h2(~isnan(z2h2) & finite(z2h2));
kc=0; % Counter for eigenvalues.
for k=1:max(size(z1h2)),
logic = ~isnan(z1h2(k)) & finite(z1h2(k));
if logic
kc= kc+1;
z1(kc,1) = z1h2(k);
vech2(:,kc) = v1h(:,k);
end
end
nz = length(z1);
vech3 = [];
Z = [];
for i=1:nz,
if any(abs(z1(i)-z2) < nrm*sqrt(epp))
Z = [Z; z1(i)];
vech3 = [vech3 vech2(:,i)];
end
end
% Split in ux and xz
if isempty( vech3 )
Z = []; U = []; X = [];
return;
end
vx = vech3(1:nx, : );
vu = vech3(nx+1:nx+nu,:);
% Normalize columns.
[nvr, nvc] = size( vu );
for i=1:nvc,
nrmu = norm(vu(:,i));
if nrmu > 1000*epp
vx(:,i) = vx(:,i)/nrmu;
vu(:,i) = vu(:,i)/nrmu;
else
vu(:,i) = zeros(nu,1);
end
Inz = find( abs(vu(:,i)) > 1000*epp );
if isempty(Inz) == 0
U(:,i) = vu(:,i) * exp( -angle(vu(Inz(1),i))*sqrt(-1) );
X(:,i) = vx(:,i) * exp( -angle(vu(Inz(1),i))*sqrt(-1) );
else
X(:,i) = vx(:,i);
Y(:,i) = vu(:,i);
end
end
end
else
error('matrix is not a SYSTEM matrix')
return
end
%
% Copyright MUSYN INC 1991, All Rights Reserved
% Copyright MUSYN INC 1995, All Rights Reserved
%
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -