⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 description of calc.htm

📁 calc大数库
💻 HTM
📖 第 1 页 / 共 4 页
字号:
  href="http://www.numbertheory.org/calc/krm_calc.html#[65]">ordercubicr</A>(&nbsp;) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#[57]">convergents</A>(a[&nbsp;],&amp;p[&nbsp;],&amp;q[&nbsp;]) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#[58]">lagrange</A>(f(X),&amp;a[&nbsp;],m) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#[60]">z=perfectpower</A>(n) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#[61]">axb</A>(&nbsp;) 
  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#[62]">addcubicm</A>(&nbsp;) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#[63]">powercubicm</A>(&nbsp;) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#[64]">ordercubicm</A>(&nbsp;) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#[66]">leastqnr</A>(p) 
  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#sturm">sturm</A>(f(X)) 
  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#rootexp">rootexp</A>(f(X), 
  m) 
  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#content">content</A>(f(X)) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#primitive">primitive</A>(f(X)) 
<!--<li> <a href="#log">log</a>(a,b,d,u,v,e)<li> <a href="#log1">log1</a>(a,b,r,e)-->
  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#sqroot">sqroot</A>(a,n,&amp;s[&nbsp;],&amp;m) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#cornacchia">cornacchia</A>(a,b,m) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#[22]">z=surd</A>(d,t,u,v,&amp;a[],&amp;u[],&amp;v[],&amp;p[],&amp;q[]) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#patz">patz</A>(d,n) 
  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#congq">congq</A>(a,b,c,n,&amp;s[]) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#binform">binform</A>(a,b,c,n,e) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#ceil">ceil</A>(a,b) 
  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#log">log</A>(a,b,d,&amp;a[],&amp;l) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#testlog">testlog</A>(a,b,d,m,n) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#resultant">r=resultant</A>(p(X),q(X)) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#discriminant">r=discriminant</A>(p(X)) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#deriv">q=deriv</A>(p(X)) 
  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#primes">c=primes</A>(m,n) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#sturmsequence">c=sturmsequence</A>(f(X),b,e) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#cyclotomic">p=cyclotomic</A>(n) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#classnop">h=classnop</A>(d) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#classnon">h=classnon</A>(d) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#nearint">z=nearint</A>(a,b) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#reduceneg">h=reduceneg</A>(a,b,c) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#reducepos">h=reducepos</A>(a,b,c) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#classnop0">h=classnop0</A>(d) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#tableneg">h=tableneg</A>(m,n) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#tablepos">h=tablepos</A>(m,n) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#davison">h=davison</A>(l,m,n) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#raney">h=raney</A>(p,q,r,s) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#unimodular">h=unimodular</A>(p,q,r,s) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#twoadicsqrt">twoadicsqrt</A>(b,n,&amp;a[]) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#padicsqrt">padicsqrt</A>(b,n,p,&amp;a[]) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#ramanujan">ramanujan</A>(n) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#repdefinite">repdefinite</A>(a,b,c,m,print_flag) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#powerd">powerd</A>(a,b,d,n,&amp;aa,&amp;bb) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#euclid1">z=euclid1</A>(a,b) 

  <LI><A 
  href="http://www.numbertheory.org/calc/krm_calc.html#cfracperiod">z=cfracperiod</A>(d) 
  </LI></OL>
<HR>
<A 
name=[56]></A><TT>euclid(a,b,&amp;q[&nbsp;],&amp;r[&nbsp;],&amp;s[&nbsp;],&amp;t[&nbsp;],&amp;m)</TT><BR>Here 
m=n+1 and the arrays <BR>q[0]=NULL,...,q[n],q[n+1]=NULL, 
<BR>r[0]=a,r[1]=b,...,r[n+1], <BR>s[0]=a,s[1]=[,...,s[n+1], 
<BR>t[0]=a,t[1]=[,...,t[n+1], <BR>arising from Euclid's algorithm are returned 
and printed in euclid.out. <BR>r[k]=r[k+1]*q[k+1]+r[k+2], 0 &lt; r[k+2] &lt; 
r[k+1], <BR>s[k]=-q[k-1]*s[k-1]+s[k-2], <BR>t[k]=-q[k-1]*t[k-1]+t[k-2], 
<BR>r[n]=gcd(a,b)=s[n]*a+t[n]*b. 
<HR>
<A name=[1]></A><TT>z=gcd(x,y)</TT> <BR>This returns the gcd of x and y. 
<HR>
<A name=[2]></A><TT>z=gcdv(x,y,&amp;u,&amp;v)</TT> <BR>As well as returning 
z=gcd(x,y), it gives numbers u and v arising from Euclid's algorithm and 
satisfying the equation z = ux+vy. 
<HR>
<A name=[3]></A><TT>z=gcda(a[&nbsp;])</TT> <BR>z = gcd(a[0],...,a[n-1]), where 
values for a[0],...,a[n-1] having been previously entered. 
<HR>
<A name=[4]></A><TT>z=gcdav(a[&nbsp;],&amp;b[&nbsp;])</TT> <BR>z = 
gcd(a[0],...,a[n-1]). Also gives integers b[0],...,b[n-1] satisfying z = 
b[0]a[0]+...+b[n-1]a[n-1]. 
<HR>
<A name=[5]></A><TT>egcd(&nbsp;)</TT> <BR>This is an implementation of Algorithm 
1 of a recent <A 
href="http://www.expmath.org/expmath/volumes/7/7.html">paper</A> by Havas, 
Majewski and Matthews. <BR>Like lllgcd(&nbsp;), it finds short multipliers for 
the gcd of m numbers, using LLL ideas. It also finds <I>all</I> shortest 
vectors, unlike lllgcd(&nbsp;), which lists only one shortest multiplier. The 
file of m integers should have as its first line m, then the integers should be 
listed on separate lines. <BR>An m x m matrix whose rows are X[1],...,X[m-1],P 
is sent to an output file egcdmat.out. <BR>Here X[1],...,X[m-1] form a LLL 
reduced basis for the lattice L defined by the equation 
x<SUB>1</SUB>d<SUB>1</SUB>+ ··· +x<SUB>m</SUB>d<SUB>m</SUB> = 0. <BR>The 
multipliers are sent to an output file called egcdmult.out. <BR>Sometimes the 
multipliers delivered by egcd() are shorter that those of lllgcd(&nbsp;). There 
is also an option to find all the shortest multipliers. 
<HR>
<A name=[6]></A><TT>sgcd(N)</TT> <BR>This performs the LLL algorithm on 
[I<SUB>n</SUB>|NA], where A is a column vector of positive integers. This is 
Algorithm 2 of <A href="http://www.numbertheory.org/lll.html">paper</A>. If N is 
sufficiently large, the last column will be reduced to ±NdE<SUB>n</SUB>, where d 
= gcd(a[1],...,a[n]). Output is sent to sgcdbas.out. 
<HR>
<A name=[49]></A><TT>lllgcd()</TT> <BR>This performs a modification of LLL which 
is essentially a limiting form of sgcd(N) for large N. It is superior to egcd() 
in that it avoids inputting a large initial unimodular matrix and instead builds 
one from the identity matrix at the outset. This is Algorithm 3 of a recent <A 
href="http://www.numbertheory.org/lll.html">paper</A> of Havas, Majewski and 
Matthews. <BR>The file of m integers should have as its first line m, then the 
integers should be listed on separate lines. <BR>An m x m matrix whose rows are 
X[1],...,X[m] is sent to an output file lllgcdmat.out. <BR>Here X[1],...,X[m-1] 
form a LLL reduced basis for the lattice L defined by the equation 
x<SUB>1</SUB>d<SUB>1</SUB>+ ··· +x<SUB>m</SUB>d<SUB>m</SUB> = 0. <BR>The 
inhomogeneous version of the Fincke-Pohst algorithm (see [<A 
href="http://www.numbertheory.org/calc/krm_calc.html#[Po2]">Po2</A>][191]) can 
then be used as an option to find a shortest multiplier vector by solving the 
inequality 
<P>&nbsp;||X[m] - x<SUB>1</SUB>X[1]- ··· -x<SUB>m-1</SUB>X[m-1]||<SUP>2</SUP> ≤ 
||X[m]||<SUP>2</SUP> 
<P>&nbsp;in integers x<SUB>1</SUB>,...,x<SUB>m-1</SUB>. <BR>Each time a shorter 
multiplier vector Q = X[m]-x<SUB>1</SUB>X[1]- ··· -x<SUB>m-1</SUB>X[m-1] is 
found, X[m] is replaced by Q, until the shortest Q is found. The multipliers are 
sent to an output file called lllgcdmult.out. The unimodular matrix P of a <A 
href="http://www.expmath.org/expmath/volumes/7/7.html">recent paper</A> of 
Havas, Majewski and Matthews, is sent to lllgcdmat.out. In verbose mode, the 
intermediate steps are printed. <BR>Note: if the shortest vector option is 
chosen, the last row of P has been replaced by this vector. 
<HR>
<A name=[53]></A><TT>lllgcd0(&nbsp;)</TT> <BR>This in general gives a better 
multiplier than lllgcd and is based on an algorithm in <A 
href="http://www.numbertheory.org/lll.html#lllgcd0">a recent manuscript</A> of 
the author. <BR>
<HR>
<!--<a name="[53]"><tt>gcd3()</tt></a><br> This specialized function is an outgrowth of research with George Havas on small multipliers for the extended gcd problem. <br>We apply lllgcd() to all triples (i,j,k) in given ranges, where gcd(i,j,k)=1. We get a unimodular matrix with rows b[1],b[2],b[3], with b[3] a small multiplier. We then apply our crude Fincke-Pohst to get the shortest multiplier and express it as b[3]+e[1]b[1]+e[2]b[2]. The output is sent to a file gcd3.out. One has to choose the signs of mu[2][1],mu[3][1] and mu[3][2]. If the LLL parameter alpha &gt;= 3/8, then |e[1]|,|e[2]| &lt;= 1.<hr><a name="[54]"><tt>gcd4()</tt></a>, <a name="[55]"><tt>gcd5()</tt></a><br> These are similar to <tt>gcd3()</tt>, except there is no restriction on signs of the mu[i][j].<hr>--><A 
name=[50]></A><TT>jacobigcd(&nbsp;)</TT> <BR>This performs Jacobi's extended gcd 
algorithm of 1869. In verbose mode the intermediate steps are printed out. <BR>
<HR>
<A name=[7]></A><TT>z=lcm(x,y)</TT> <BR>
<HR>
<A name=[8]></A><TT>z=lcma(x)</TT> <BR>z = lcm(x[0],...,x[n-1]). (n is the size 
of the array) 
<HR>
<A name=[9]></A><TT>z=length(n)</TT> <BR>z is the number of decimal digits of n. 

<HR>
<A name=[10]></A><TT>z=pollard(x)</TT> <BR>This attempts to return a factor of a 
composite x using Pollard's p-1 method. 
<HR>
<A name=[11]></A><TT>z=nprime(x)</TT> <BR>This finds the first integer after x 
which passes the strong base 2 pseudoprime test and the Lucas pseudoprime test. 
(See [<A href="http://www.numbertheory.org/calc/krm_calc.html#[Pom]">Pom</A>].) 
This integer is likely to be prime. 
<HR>
<A name=[12]></A><TT>z=nprimeap(a,b,m)</TT> <BR>This finds the first p, p=b(mod 
a), m ≤ p, which passes the strong base 2 pseudoprime test and the Lucas 
pseudoprime test. Here a must be even, b odd, 1 ≤ b &lt; a, gcd(a,b)=1, b ≤ m. 
<HR>
<A name=[13]></A><TT>z=jacobi(x,y)</TT> <BR>z is the value of the Jacobi symbol 
(x/y). 
<HR>
<A name=[14]></A><TT>z=peralta(a,p)</TT> <BR>Peralta's algorithm is used to 
return a square root z of a (mod p). Here a is a quadratic residue mod p. (See 
[<A href="http://www.numbertheory.org/calc/krm_calc.html#[Per]">Per</A>].) 
<HR>
<A name=[15]></A><TT>x=congr(a,b,m,&amp;n)</TT> <BR>Returns the solution x of 
the congruence ax=b(mod m). Also n=m/gcd(a,m) is returned. 
<HR>
<A name=[16]></A><TT>x=chinese(a,b,m,n,&amp;l)</TT> <BR>Returns the solution 
x(mod l) of the system of congruences x=a(mod m) and x=b(mod n). Also l=lcm(m,n) 
is returned. 
<HR>
<A name=[17]></A><TT>x=chinesea(a[&nbsp;],m[&nbsp;],&amp;l)</TT> <BR>Returns the 
solution x(mod l) of the system of congruences x=a[i](mod m[i]), 0 ≤ i &lt; n. 
Also l=lcm(m[0],...,m[n-1]) is returned. (n is the size of the array) 
<HR>
<A name=[18]></A><TT>z=mthroot(x,m)</TT> <BR>The integer part of the m-th root 
of x is returned. (See [<A 
href="http://www.numbertheory.org/calc/krm_calc.html#[Mat]">Mat</A>].) 
<HR>
<A name=[19]></A><TT>mthrootr(x,y,m,r)</TT> <BR>The m-th root of x/y is computed 
to r decimal places. 
<HR>
<A name=[20]></A><TT>z=fund(d,&amp;x,&amp;y)</TT> <BR>x and y are returned, 
where x+y <IMG alt=omega src="DESCRIPTION OF CALC.files/omega.gif"> is the 
fundamental unit of Q(√d). z=Norm(x+y <IMG alt=omega 
src="DESCRIPTION OF CALC.files/omega.gif">) is also returned. 
<HR>
<A name=[21]></A><TT>z=pell(d,e,&amp;x,&amp;y)</TT> <BR>The continued fraction 
expansion of √d is periodic after the first term: 
<BR>a[0],a[1],...,a[n-1],2a[0],a[1],...,a[n-1],2a[0],.... Also the section 
a[1],...,a[n-1] is palindromic. We print a[0] and half the palindrome, iff e is 
nonzero, sending the output to a file called pell.out. <BR>The least solution x 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -