⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 svm.cpp

📁 变化检测源程序
💻 CPP
📖 第 1 页 / 共 5 页
字号:
			{				if(-G[k] < Gm1) continue;			}			else	if(-G[k] < Gm3) continue;		}		else if(is_upper_bound(k))		{			if(y[k]==+1)			{				if(G[k] < Gm2) continue;			}			else	if(G[k] < Gm4) continue;		}		else continue;		swap_index(k,active_size);		active_size++;		++k;	// look at the newcomer	}}double Solver_NU::calculate_rho(){	int nr_free1 = 0,nr_free2 = 0;	double ub1 = INF, ub2 = INF;	double lb1 = -INF, lb2 = -INF;	double sum_free1 = 0, sum_free2 = 0;	for(int i=0;i<active_size;i++)	{		if(y[i]==+1)		{			if(is_lower_bound(i))				ub1 = min(ub1,G[i]);			else if(is_upper_bound(i))				lb1 = max(lb1,G[i]);			else			{				++nr_free1;				sum_free1 += G[i];			}		}		else		{			if(is_lower_bound(i))				ub2 = min(ub2,G[i]);			else if(is_upper_bound(i))				lb2 = max(lb2,G[i]);			else			{				++nr_free2;				sum_free2 += G[i];			}		}	}	double r1,r2;	if(nr_free1 > 0)		r1 = sum_free1/nr_free1;	else		r1 = (ub1+lb1)/2;		if(nr_free2 > 0)		r2 = sum_free2/nr_free2;	else		r2 = (ub2+lb2)/2;		si->r = (r1+r2)/2;	return (r1-r2)/2;}//// Q matrices for various formulations//class ONE_CLASS_QMY: public Kernel
{
public:
	ONE_CLASS_QMY(const svm_problem& prob,const svm_problem& prob2,const svm_parameter& param)
	:Kernel(prob.l, prob.x,prob2.x, param)
	{
		cache = new Cache(prob.l,(int)(param.cache_size*(1<<20)));
		QD = new Qfloat[prob.l];
		for(int i=0;i<prob.l;i++)
			QD[i]= 1;
		
		int temp=0;
	}
	
	Qfloat *get_Q(int i, int len) const
	{
		Qfloat *data;
		int start;
		if((start = cache->get_data(i,&data,len)) < len)
		{
			for(int j=start;j<len;j++)
				data[j] = (Qfloat)(this->*kernel_function)(i,j);
		}
		return data;
	}

	Qfloat *get_QD() const
	{
		return QD;
	}

	void swap_index(int i, int j) const
	{
		cache->swap_index(i,j);
		Kernel::swap_index(i,j);
		swap(QD[i],QD[j]);
	}

	~ONE_CLASS_QMY()
	{
		delete cache;
		delete[] QD;
	}
private:
	Cache *cache;
	Qfloat *QD;
};//// construct and solve various formulations//static void solve_c_svc(	const svm_problem *prob, const svm_parameter* param,	double *alpha, Solver::SolutionInfo* si, double Cp, double Cn){	int l = prob->l;	double *minus_ones = new double[l];	schar *y = new schar[l];	int i;	for(i=0;i<l;i++)	{		alpha[i] = 0;		minus_ones[i] = -1;		if(prob->y[i] > 0) y[i] = +1; else y[i]=-1;	}//	Solver s;
//	s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
//		alpha, Cp, Cn, param->eps, si, param->shrinking);
	double sum_alpha=0;	for(i=0;i<l;i++)		sum_alpha += alpha[i];	if (Cp==Cn)		info("nu = %f\n", sum_alpha/(Cp*prob->l));	for(i=0;i<l;i++)		alpha[i] *= y[i];	delete[] minus_ones;	delete[] y;}static void solve_nu_svc(	const svm_problem *prob, const svm_parameter *param,	double *alpha, Solver::SolutionInfo* si){	int i;	int l = prob->l;	double nu = param->nu;	schar *y = new schar[l];	for(i=0;i<l;i++)		if(prob->y[i]>0)			y[i] = +1;		else			y[i] = -1;	double sum_pos = nu*l/2;	double sum_neg = nu*l/2;	for(i=0;i<l;i++)		if(y[i] == +1)		{			alpha[i] = min(1.0,sum_pos);			sum_pos -= alpha[i];		}		else		{			alpha[i] = min(1.0,sum_neg);			sum_neg -= alpha[i];		}	double *zeros = new double[l];	for(i=0;i<l;i++)		zeros[i] = 0;//	Solver_NU s;
//	s.Solve(l, SVC_Q(*prob,*param,y), zeros, y,
//		alpha, 1.0, 1.0, param->eps, si,  param->shrinking);
	double r = si->r;	info("C = %f\n",1/r);	for(i=0;i<l;i++)		alpha[i] *= y[i]/r;	si->rho /= r;	si->obj /= (r*r);	si->upper_bound_p = 1/r;	si->upper_bound_n = 1/r;	delete[] y;	delete[] zeros;}static void solve_one_class(	const svm_problem *prob, const svm_parameter *param,	double *alpha, Solver::SolutionInfo* si){	int l = prob->l;	double *zeros = new double[l];	schar *ones = new schar[l];	int i;	int n = (int)(param->nu*prob->l);	// # of alpha's at upper bound	for(i=0;i<n;i++)		alpha[i] = 1;	if(n<prob->l)		alpha[n] = param->nu * prob->l - n;	for(i=n+1;i<l;i++)		alpha[i] = 0;	for(i=0;i<l;i++)	{		zeros[i] = 0;		ones[i] = 1;	}//	Solver s;
//	s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones,
//		alpha, 1.0, 1.0, param->eps, si, param->shrinking);
	delete[] zeros;	delete[] ones;}static void solve_one_classmy(
	const svm_problem *prob,const svm_problem *prob2,const svm_parameter *param,
	double *alpha, Solver::SolutionInfo* si)
{
	int l = prob->l;
	double *zeros = new double[l];
	schar *ones = new schar[l];
	int i;

	int n = (int)(param->nu*prob->l);	// # of alpha's at upper bound

	for(i=0;i<n;i++)
		alpha[i] = 1;
	if(n<prob->l)
		alpha[n] = param->nu * prob->l - n;
	for(i=n+1;i<l;i++)
		alpha[i] = 0;

	for(i=0;i<l;i++)
	{
		zeros[i] = 0;
		ones[i] = 1;
	}
	const QMatrix &matr=ONE_CLASS_QMY(*prob,*prob2,*param);
	Solver s;
	s.Solve(l, matr, zeros, ones,
		alpha, 1.0, 1.0, param->eps, si, param->shrinking);

	delete[] zeros;
	delete[] ones;
}static void solve_epsilon_svr(	const svm_problem *prob, const svm_parameter *param,	double *alpha, Solver::SolutionInfo* si){	int l = prob->l;	double *alpha2 = new double[2*l];	double *linear_term = new double[2*l];	schar *y = new schar[2*l];	int i;	for(i=0;i<l;i++)	{		alpha2[i] = 0;		linear_term[i] = param->p - prob->y[i];		y[i] = 1;		alpha2[i+l] = 0;		linear_term[i+l] = param->p + prob->y[i];		y[i+l] = -1;	}//	Solver s;
//	s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
//		alpha2, param->C, param->C, param->eps, si, param->shrinking);
	double sum_alpha = 0;	for(i=0;i<l;i++)	{		alpha[i] = alpha2[i] - alpha2[i+l];		sum_alpha += fabs(alpha[i]);	}	info("nu = %f\n",sum_alpha/(param->C*l));	delete[] alpha2;	delete[] linear_term;	delete[] y;}static void solve_nu_svr(	const svm_problem *prob, const svm_parameter *param,	double *alpha, Solver::SolutionInfo* si){	int l = prob->l;	double C = param->C;	double *alpha2 = new double[2*l];	double *linear_term = new double[2*l];	schar *y = new schar[2*l];	int i;	double sum = C * param->nu * l / 2;	for(i=0;i<l;i++)	{		alpha2[i] = alpha2[i+l] = min(sum,C);		sum -= alpha2[i];		linear_term[i] = - prob->y[i];		y[i] = 1;		linear_term[i+l] = prob->y[i];		y[i+l] = -1;	}//	Solver_NU s;
//	s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
//		alpha2, C, C, param->eps, si, param->shrinking);
	info("epsilon = %f\n",-si->r);	for(i=0;i<l;i++)		alpha[i] = alpha2[i] - alpha2[i+l];	delete[] alpha2;	delete[] linear_term;	delete[] y;}//// decision_function//struct decision_function{	double *alpha;	double rho;	};decision_function svm_train_one(	const svm_problem *prob, const svm_parameter *param,	double Cp, double Cn){	double *alpha = Malloc(double,prob->l);	Solver::SolutionInfo si;	switch(param->svm_type)	{		case C_SVC:			solve_c_svc(prob,param,alpha,&si,Cp,Cn);			break;		case NU_SVC:			solve_nu_svc(prob,param,alpha,&si);			break;		case ONE_CLASS:			solve_one_class(prob,param,alpha,&si);			break;		case EPSILON_SVR:			solve_epsilon_svr(prob,param,alpha,&si);			break;		case NU_SVR:			solve_nu_svr(prob,param,alpha,&si);			break;	}	info("obj = %f, rho = %f\n",si.obj,si.rho);	// output SVs	int nSV = 0;	int nBSV = 0;	for(int i=0;i<prob->l;i++)	{		if(fabs(alpha[i]) > 0)		{			++nSV;			if(prob->y[i] > 0)			{				if(fabs(alpha[i]) >= si.upper_bound_p)					++nBSV;			}			else			{				if(fabs(alpha[i]) >= si.upper_bound_n)					++nBSV;			}		}	}	info("nSV = %d, nBSV = %d\n",nSV,nBSV);	decision_function f;	f.alpha = alpha;	f.rho = si.rho;	return f;}decision_function svm_train_onemy(
	const svm_problem *prob, const svm_problem *prob2,const svm_parameter *param,
	double Cp, double Cn)
{
	double *alpha = Malloc(double,prob->l);
	Solver::SolutionInfo si;
	switch(param->svm_type)
	{
		case C_SVC:
			solve_c_svc(prob,param,alpha,&si,Cp,Cn);
			break;
		case NU_SVC:
			solve_nu_svc(prob,param,alpha,&si);
			break;
		case ONE_CLASS:
			solve_one_class(prob,param,alpha,&si);
			break;
		case EPSILON_SVR:
			solve_epsilon_svr(prob,param,alpha,&si);
			break;
		case NU_SVR:
			solve_nu_svr(prob,param,alpha,&si);
			break;
		case ONE_CLASS_MY:
			solve_one_classmy(prob,prob2,param,alpha,&si);
			break;

	}

	info("obj = %f, rho = %f\n",si.obj,si.rho);

	// output SVs

	int nSV = 0;
	int nBSV = 0;
	for(int i=0;i<prob->l;i++)
	{
		if(fabs(alpha[i]) > 0)
		{
			++nSV;
			if(prob->y[i] > 0)
			{
				if(fabs(alpha[i]) >= si.upper_bound_p)
					++nBSV;
			}
			else
			{
				if(fabs(alpha[i]) >= si.upper_bound_n)
					++nBSV;
			}
		}
	}

	info("nSV = %d, nBSV = %d\n",nSV,nBSV);

	decision_function f;
	f.alpha = alpha;
	f.rho = si.rho;
	return f;
}//// svm_model//// Platt's binary SVM Probablistic Output: an improvement from Lin et al.void sigmoid_train(	int l, const double *dec_values, const double *labels, 	double& A, double& B){	double prior1=0, prior0 = 0;	int i;	for (i=0;i<l;i++)		if (labels[i] > 0) prior1+=1;		else prior0+=1;		int max_iter=100; 	// Maximal number of iterations	double min_step=1e-10;	// Minimal step taken in line search	double sigma=1e-3;	// For numerically strict PD of Hessian	double eps=1e-5;	double hiTarget=(prior1+1.0)/(prior1+2.0);	double loTarget=1/(prior0+2.0);	double *t=Malloc(double,l);	double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize;	double newA,newB,newf,d1,d2;	int iter; 		// Initial Point and Initial Fun Value	A=0.0; B=log((prior0+1.0)/(prior1+1.0));	double fval = 0.0;	for (i=0;i<l;i++)	{		if (labels[i]>0) t[i]=hiTarget;		else t[i]=loTarget;		fApB = dec_values[i]*A+B;		if (fApB>=0)			fval += t[i]*fApB + log(1+exp(-fApB));		else			fval += (t[i] - 1)*fApB +log(1+exp(fApB));	}	for (iter=0;iter<max_iter;iter++)	{		// Update Gradient and Hessian (use H' = H + sigma I)		h11=sigma; // numerically ensures strict PD		h22=sigma;		h21=0.0;g1=0.0;g2=0.0;		for (i=0;i<l;i++)		{			fApB = dec_values[i]*A+B;			if (fApB >= 0)			{				p=exp(-fApB)/(1.0+exp(-fApB));				q=1.0/(1.0+exp(-fApB));			}			else			{				p=1.0/(1.0+exp(fApB));				q=exp(fApB)/(1.0+exp(fApB));			}			d2=p*q;			h11+=dec_values[i]*dec_values[i]*d2;			h22+=d2;			h21+=dec_values[i]*d2;			d1=t[i]-p;			g1+=dec_values[i]*d1;			g2+=d1;		}		// Stopping Criteria		if (fabs(g1)<eps && fabs(g2)<eps)			break;		// Finding Newton direction: -inv(H') * g		det=h11*h22-h21*h21;		dA=-(h22*g1 - h21 * g2) / det;		dB=-(-h21*g1+ h11 * g2) / det;		gd=g1*dA+g2*dB;		stepsize = 1; 		// Line Search		while (stepsize >= min_step)		{			newA = A + stepsize * dA;			newB = B + stepsize * dB;			// New function value			newf = 0.0;			for (i=0;i<l;i++)			{				fApB = dec_values[i]*newA+newB;				if (fApB >= 0)					newf += t[i]*fApB + log(1+exp(-fApB));				else					newf += (t[i] - 1)*fApB +log(1+exp(fApB));			}			// Check sufficient decrease			if (newf<fval+0.0001*stepsize*gd)			{				A=newA;B=newB;fval=newf;				break;			}			else				stepsize = stepsize / 2.0;		}		if (stepsize < min_step)		{			info("Line search fails in two-class probability estimates\n");			break;		}	}	if (iter>=max_iter)		info("Reaching maximal iterations in two-class probability estimates\n");	free(t);}double sigmoid_predict(double decision_value, double A, double B){	double fApB = decision_value*A+B;	if (fApB >= 0)		return exp(-fApB)/(1.0+exp(-fApB));	else		return 1.0/(1+exp(fApB)) ;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -