⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 methods.cc

📁 著名的数学计算类库
💻 CC
字号:
#ifndef BZ_ARRAYMETHODS_CC#define BZ_ARRAYMETHODS_CC#ifndef BZ_ARRAY_H #error <blitz/array/methods.cc> must be included via <blitz/array.h>#endifBZ_NAMESPACE(blitz)template<typename P_numtype, int N_rank> template<typename T_expr>Array<P_numtype,N_rank>::Array(_bz_ArrayExpr<T_expr> expr){    // Determine extent of the array expression    TinyVector<int,N_rank> lbound, extent, ordering;    TinyVector<bool,N_rank> ascendingFlag;    TinyVector<bool,N_rank> in_ordering;    in_ordering = false;    int j = 0;    for (int i=0; i < N_rank; ++i)    {        lbound(i) = expr.lbound(i);        int ubound = expr.ubound(i);        extent(i) = ubound - lbound(i) + 1;        int orderingj = expr.ordering(i);        if (orderingj != INT_MIN && orderingj < N_rank &&            !in_ordering( orderingj )) { // unique value in ordering array            in_ordering( orderingj ) = true;            ordering(j++) = orderingj;        }        int ascending = expr.ascending(i);        ascendingFlag(i) = (ascending == 1);#ifdef BZ_DEBUG        if ((lbound(i) == INT_MIN) || (ubound == INT_MAX)           || (ordering(i) == INT_MIN) || (ascending == INT_MIN))        {          BZPRECHECK(0,           "Attempted to construct an array from an expression " << endl           << "which does not have a shape.  To use this constructor, "           << endl            << "the expression must contain at least one array operand.");          return;        }#endif    }    // It is possible that ordering is not a permutation of 0,...,N_rank-1.    // In that case j will be less than N_rank. We fill in ordering with the    // usused values in decreasing order.    for (int i = N_rank-1; j < N_rank; ++j) {        while (in_ordering(i))          --i;        ordering(j) = i--;    }    Array<T_numtype,N_rank> A(lbound,extent,        GeneralArrayStorage<N_rank>(ordering,ascendingFlag));    A = expr;    reference(A);}template<typename P_numtype, int N_rank>Array<P_numtype,N_rank>::Array(const TinyVector<int, N_rank>& lbounds,    const TinyVector<int, N_rank>& extent,    const GeneralArrayStorage<N_rank>& storage)    : storage_(storage){    length_ = extent;    storage_.setBase(lbounds);    setupStorage(N_rank - 1);}/* * This routine takes the storage information for the array * (ascendingFlag_[], base_[], and ordering_[]) and the size * of the array (length_[]) and computes the stride vector * (stride_[]) and the zero offset (see explanation in array.h). */template<typename P_numtype, int N_rank>_bz_inline2 void Array<P_numtype, N_rank>::computeStrides(){    if (N_rank > 1)    {      int stride = 1;      // This flag simplifies the code in the loop, encouraging      // compile-time computation of strides through constant folding.      bool allAscending = storage_.allRanksStoredAscending();      // BZ_OLD_FOR_SCOPING      int n;      for (n=0; n < N_rank; ++n)      {          int strideSign = +1;          // If this rank is stored in descending order, then the stride          // will be negative.          if (!allAscending)          {            if (!isRankStoredAscending(ordering(n)))                strideSign = -1;          }          // The stride for this rank is the product of the lengths of          // the ranks minor to it.          stride_[ordering(n)] = stride * strideSign;          stride *= length_[ordering(n)];      }    }    else {        // Specialization for N_rank == 1        // This simpler calculation makes it easier for the compiler        // to propagate stride values.        if (isRankStoredAscending(0))            stride_[0] = 1;        else            stride_[0] = -1;    }    calculateZeroOffset();}template<typename P_numtype, int N_rank>void Array<P_numtype, N_rank>::calculateZeroOffset(){    // Calculate the offset of (0,0,...,0)    zeroOffset_ = 0;    // zeroOffset_ = - sum(where(ascendingFlag_, stride_ * base_,    //     (length_ - 1 + base_) * stride_))    for (int n=0; n < N_rank; ++n)    {        if (!isRankStoredAscending(n))            zeroOffset_ -= (length_[n] - 1 + base(n)) * stride_[n];        else            zeroOffset_ -= stride_[n] * base(n);    }}template<typename P_numtype, int N_rank>bool Array<P_numtype, N_rank>::isStorageContiguous() const{    // The storage is contiguous if for the set    // { | stride[i] * extent[i] | }, i = 0..N_rank-1,    // there is only one value which is not in the set    // of strides; and if there is one stride which is 1.    // This algorithm is quadratic in the rank.  It is hard    // to imagine this being a serious problem.    int numStridesMissing = 0;    bool haveUnitStride = false;    for (int i=0; i < N_rank; ++i)    {        int stride = BZ_MATHFN_SCOPE(abs)(stride_[i]);        if (stride == 1)            haveUnitStride = true;        int vi = stride * length_[i];        int j = 0;        for (j=0; j < N_rank; ++j)            if (BZ_MATHFN_SCOPE(abs)(stride_[j]) == vi)                break;        if (j == N_rank)        {            ++numStridesMissing;            if (numStridesMissing == 2)                return false;        }    }    return haveUnitStride;}template<typename P_numtype, int N_rank>void Array<P_numtype, N_rank>::dumpStructureInformation(ostream& os) const{    os << "Dump of Array<" << BZ_DEBUG_TEMPLATE_AS_STRING_LITERAL(P_numtype)        << ", " << N_rank << ">:" << endl       << "ordering_      = " << storage_.ordering() << endl       << "ascendingFlag_ = " << storage_.ascendingFlag() << endl       << "base_          = " << storage_.base() << endl       << "length_        = " << length_ << endl       << "stride_        = " << stride_ << endl       << "zeroOffset_    = " << zeroOffset_ << endl       << "numElements()  = " << numElements() << endl       << "isStorageContiguous() = " << isStorageContiguous() << endl;}/* * Make this array a view of another array's data. */template<typename P_numtype, int N_rank>void Array<P_numtype, N_rank>::reference(const Array<P_numtype, N_rank>& array){    storage_ = array.storage_;    length_ = array.length_;    stride_ = array.stride_;    zeroOffset_ = array.zeroOffset_;    MemoryBlockReference<P_numtype>::changeBlock(array.noConst());}/* * Modify the Array storage.  Array must be unallocated. */template<typename P_numtype, int N_rank>void Array<P_numtype, N_rank>::setStorage(GeneralArrayStorage<N_rank> x){#ifdef BZ_DEBUG    if (size() != 0) {        BZPRECHECK(0,"Cannot modify storage format of an Array that has already been allocated!" << endl);        return;    }#endif    storage_ = x;    return;}/* * This method is called to allocate memory for a new array.   */template<typename P_numtype, int N_rank>_bz_inline2 void Array<P_numtype, N_rank>::setupStorage(int lastRankInitialized){    TAU_TYPE_STRING(p1, "Array<T,N>::setupStorage() [T="        + CT(P_numtype) + ",N=" + CT(N_rank) + "]");    TAU_PROFILE(" ", p1, TAU_BLITZ);    /*     * If the length of some of the ranks was unspecified, fill these     * in using the last specified value.     *     * e.g. Array<int,3> A(40) results in a 40x40x40 array.     */    for (int i=lastRankInitialized + 1; i < N_rank; ++i)    {        storage_.setBase(i, storage_.base(lastRankInitialized));        length_[i] = length_[lastRankInitialized];    }    // Compute strides    computeStrides();    // Allocate a block of memory    int numElem = numElements();    if (numElem==0)        MemoryBlockReference<P_numtype>::changeToNullBlock();    else        MemoryBlockReference<P_numtype>::newBlock(numElem);    // Adjust the base of the array to account for non-zero base    // indices and reversals    data_ += zeroOffset_;}template<typename P_numtype, int N_rank>Array<P_numtype, N_rank> Array<P_numtype, N_rank>::copy() const{    if (numElements())    {        Array<T_numtype, N_rank> z(length_, storage_);        z = *this;        return z;    }    else {        // Null array-- don't bother allocating an empty block.        return *this;    }}template<typename P_numtype, int N_rank>void Array<P_numtype, N_rank>::makeUnique(){    if (numReferences() > 1)    {        T_array tmp = copy();        reference(tmp);    }}template<typename P_numtype, int N_rank>Array<P_numtype, N_rank> Array<P_numtype, N_rank>::transpose(int r0, int r1,     int r2, int r3, int r4, int r5, int r6, int r7, int r8, int r9, int r10){    T_array B(*this);    B.transposeSelf(r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10);    return B;}template<typename P_numtype, int N_rank>void Array<P_numtype, N_rank>::transposeSelf(int r0, int r1, int r2, int r3,    int r4, int r5, int r6, int r7, int r8, int r9, int r10){    BZPRECHECK(r0+r1+r2+r3+r4+r5+r6+r7+r8+r9+r10 == N_rank * (N_rank-1) / 2,        "Invalid array transpose() arguments." << endl        << "Arguments must be a permutation of the numerals (0,...,"        << (N_rank - 1) << ")");    // Create a temporary reference copy of this array    Array<T_numtype, N_rank> x(*this);    // Now reorder the dimensions using the supplied permutation    doTranspose(0, r0, x);    doTranspose(1, r1, x);    doTranspose(2, r2, x);    doTranspose(3, r3, x);    doTranspose(4, r4, x);    doTranspose(5, r5, x);    doTranspose(6, r6, x);    doTranspose(7, r7, x);    doTranspose(8, r8, x);    doTranspose(9, r9, x);    doTranspose(10, r10, x);}template<typename P_numtype, int N_rank>void Array<P_numtype, N_rank>::doTranspose(int destRank, int sourceRank,    Array<T_numtype, N_rank>& array){    // BZ_NEEDS_WORK: precondition check    if (destRank >= N_rank)        return;    length_[destRank] = array.length_[sourceRank];    stride_[destRank] = array.stride_[sourceRank];    storage_.setAscendingFlag(destRank,         array.isRankStoredAscending(sourceRank));    storage_.setBase(destRank, array.base(sourceRank));    // BZ_NEEDS_WORK: Handling the storage ordering is currently O(N^2)    // but it can be done fairly easily in linear time by constructing    // the appropriate permutation.    // Find sourceRank in array.storage_.ordering_    int i=0;    for (; i < N_rank; ++i)        if (array.storage_.ordering(i) == sourceRank)            break;    storage_.setOrdering(i, destRank);}template<typename P_numtype, int N_rank>void Array<P_numtype, N_rank>::reverseSelf(int rank){    BZPRECONDITION(rank < N_rank);    storage_.setAscendingFlag(rank, !isRankStoredAscending(rank));    int adjustment = stride_[rank] * (lbound(rank) + ubound(rank));    zeroOffset_ += adjustment;    data_ += adjustment;    stride_[rank] *= -1;}template<typename P_numtype, int N_rank>Array<P_numtype, N_rank> Array<P_numtype,N_rank>::reverse(int rank){    T_array B(*this);    B.reverseSelf(rank);    return B;}template<typename P_numtype, int N_rank> template<typename P_numtype2>Array<P_numtype2,N_rank> Array<P_numtype,N_rank>::extractComponent(P_numtype2,     int componentNumber, int numComponents) const{    BZPRECONDITION((componentNumber >= 0)         && (componentNumber < numComponents));    TinyVector<int,N_rank> stride2;    for (int i=0; i < N_rank; ++i)      stride2(i) = stride_(i) * numComponents;    const P_numtype2* dataFirst2 =         ((const P_numtype2*)dataFirst()) + componentNumber;    return Array<P_numtype2,N_rank>(const_cast<P_numtype2*>(dataFirst2),         length_, stride2, storage_);}/*  * These routines reindex the current array to use a new base vector. * The first reindexes the array, the second just returns a reindex view * of the current array, leaving the current array unmodified. * (Contributed by Derrick Bass) */template<typename P_numtype, int N_rank>_bz_inline2 void Array<P_numtype, N_rank>::reindexSelf(const     TinyVector<int, N_rank>& newBase) {    int delta = 0;    for (int i=0; i < N_rank; ++i)      delta += (base(i) - newBase(i)) * stride_(i);    data_ += delta;    // WAS: dot(base() - newBase, stride_);    storage_.setBase(newBase);    calculateZeroOffset();}template<typename P_numtype, int N_rank>_bz_inline2 Array<P_numtype, N_rank> Array<P_numtype, N_rank>::reindex(const TinyVector<int, N_rank>& newBase) {    T_array B(*this);    B.reindexSelf(newBase);    return B;}BZ_NAMESPACE_END#endif // BZ_ARRAY_CC

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -