⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nandflash.c

📁 基于S3C2410和SM501的彩屏控制器程序
💻 C
📖 第 1 页 / 共 3 页
字号:
#define __NANDFLASH
#include "NandFlash.h"
#undef __NANDFLASH

//********************** Global Variable **********************
struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE] = {{0}};
struct nand_oob_config oob_config = { {0}, 0, 0};
static struct nand_flash_dev nand_flash_ids[] = {
	{"Toshiba TC5816BDC",     NAND_MFR_TOSHIBA, 0x64, 21, 1, 2, 0x1000},
	{"Toshiba TC5832DC",      NAND_MFR_TOSHIBA, 0x6b, 22, 0, 2, 0x2000},
	{"Toshiba TH58V128DC",    NAND_MFR_TOSHIBA, 0x73, 24, 0, 2, 0x4000},
	{"Toshiba TC58256FT/DC",  NAND_MFR_TOSHIBA, 0x75, 25, 0, 2, 0x4000},
	{"Toshiba TH58512FT",     NAND_MFR_TOSHIBA, 0x76, 26, 0, 3, 0x4000},
	{"Toshiba TC58V32DC",     NAND_MFR_TOSHIBA, 0xe5, 22, 0, 2, 0x2000},
	{"Toshiba TC58V64AFT/DC", NAND_MFR_TOSHIBA, 0xe6, 23, 0, 2, 0x2000},
	{"Toshiba TC58V16BDC",    NAND_MFR_TOSHIBA, 0xea, 21, 1, 2, 0x1000},
	{"Toshiba TH58100FT",     NAND_MFR_TOSHIBA, 0x79, 27, 0, 3, 0x4000},
	{"Samsung KM29N16000",    NAND_MFR_SAMSUNG, 0x64, 21, 1, 2, 0x1000},
	{"Samsung unknown 4Mb",   NAND_MFR_SAMSUNG, 0x6b, 22, 0, 2, 0x2000},
	{"Samsung KM29U128T",     NAND_MFR_SAMSUNG, 0x73, 24, 0, 2, 0x4000},
	{"Samsung KM29U256T",     NAND_MFR_SAMSUNG, 0x75, 25, 0, 2, 0x4000},
	{"Samsung unknown 64Mb",  NAND_MFR_SAMSUNG, 0x76, 26, 0, 3, 0x4000},
	{"Samsung KM29W32000",    NAND_MFR_SAMSUNG, 0xe3, 22, 0, 2, 0x2000},
	{"Samsung unknown 4Mb",   NAND_MFR_SAMSUNG, 0xe5, 22, 0, 2, 0x2000},
	{"Samsung KM29U64000",    NAND_MFR_SAMSUNG, 0xe6, 23, 0, 2, 0x2000},
	{"Samsung KM29W16000",    NAND_MFR_SAMSUNG, 0xea, 21, 1, 2, 0x1000},
	{NULL,}
};

//*************************************************************


//********************** Static Function **********************
/* Current NAND Device	*/
static int curr_device = -1;
static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip);
static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code);
static void NanD_ReadBuf(struct nand_chip *nand, u_char *data_buf, int cntr);
static int nand_rw (struct nand_chip* nand, int cmd,
	    size_t start, size_t len,
	    size_t * retlen, u_char * buf);
static int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean);
static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
		 size_t * retlen, u_char *buf, u_char *ecc_code);
static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
			   size_t * retlen, const u_char * buf, u_char * ecc_code);
static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
		 size_t * retlen, u_char * buf);
static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
		 size_t * retlen, const u_char * buf);
static int NanD_WaitReady(struct nand_chip *nand, int ale_wait);
static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc);

//*************************************************************



int check_block(struct nand_chip* nand, unsigned long pos)
// returns: 0-block containing pos is OK: valid erase block and	not marked bad, or no bad mark position is specified;
//			1-marked bad or otherwise invalid.
{
	int retlen;
	u8 oob_data;
	int page0 = pos & (-nand->erasesize);
	int page1 = page0 + nand->oobblock;
	int badpos = oob_config.badblock_pos;

	if (pos >= nand->totlen)
		return 1;

	if (badpos < 0)
		return 0;	/* no way to check, assume OK */

	/* Note - bad block marker can be on first or second page */
	if (nand_read_oob(nand, page0 + badpos, 1, (size_t *)&retlen, &oob_data) ||
	    oob_data != 0xff ||
	    nand_read_oob(nand, page1 + badpos, 1,(size_t *)&retlen, &oob_data) ||
	    oob_data != 0xff)
		return 1;

	return 0;
}

/* cmd: 0: NANDRW_WRITE			write, fail on bad block
 *	1: NANDRW_READ			read, fail on bad block
 *	2: NANDRW_WRITE | NANDRW_JFFS2	write, skip bad blocks
 *	3: NANDRW_READ | NANDRW_JFFS2	read, data all 0xff for bad blocks
 */
static int nand_rw (struct nand_chip* nand, int cmd,
	    size_t start, size_t len,
	    size_t * retlen, u_char * buf)
{
	int ret = 0, n, total = 0;
	char eccbuf[6];
	/* eblk (once set) is the start of the erase block containing the
	 * data being processed.
	 */
	unsigned long eblk = ~0;	/* force mismatch on first pass */
	unsigned long erasesize = nand->erasesize;

	while (len) {
		if ((start & (-erasesize)) != eblk) {
			/* have crossed into new erase block, deal with
			 * it if it is sure marked bad.
			 */
			eblk = start & (-erasesize); /* start of block */
			if (check_block(nand, eblk)) {
				if (cmd == (NANDRW_READ | NANDRW_JFFS2)) {
					while (len > 0 &&
					       start - eblk < erasesize) {
						*(buf++) = 0xff;
						++start;
						++total;
						--len;
					}
					continue;
				}
				else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) {
					/* skip bad block */
					start += erasesize;
					continue;
				}
				else {
					ret = 1;
					break;
				}
			}
		}
		/* The ECC will not be calculated correctly if
		   less than 512 is written or read */
		/* Is request at least 512 bytes AND it starts on a proper boundry */
		if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200))
			printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n");

		if (cmd & NANDRW_READ)
			ret = nand_read_ecc(nand, start,
					   min(len, eblk + erasesize - start),
					   (size_t *)&n, (u_char*)buf, (u_char *)eccbuf);
		else
			ret = nand_write_ecc(nand, start,
					    min(len, eblk + erasesize - start),
					    (size_t *)&n, (u_char*)buf, (u_char *)eccbuf);

		if (ret)
			break;

		start  += n;
		buf   += n;
		total += n;
		len   -= n;
	}
	if (retlen)
		*retlen = total;

	return ret;
}


static int NanD_WaitReady(struct nand_chip *nand, int ale_wait)
{
	/* This is inline, to optimise the common case, where it's ready instantly */
	int ret = 0;

#ifdef NAND_NO_RB	/* in config file, shorter delays currently wrap accesses */
	if(ale_wait)
		NAND_WAIT_READY(nand);	/* do the worst case 25us wait */
	else
		udelay(10);
#else	/* has functional r/b signal */
	NAND_WAIT_READY(nand);
//	udelay(25);		// 考虑在最坏情形下延时25us
#endif
	return ret;
}

/* NanD_Command: Send a flash command to the flash chip */

static __inline int NanD_Command(struct nand_chip *nand, unsigned char command)
{
	unsigned long nandptr = nand->IO_ADDR;

	/* Assert the CLE (Command Latch Enable) line to the flash chip */
	NAND_CTL_SETCLE(nandptr);

	/* Send the command */
	WRITE_NAND_COMMAND(command, nandptr);

	/* Lower the CLE line */
	NAND_CTL_CLRCLE(nandptr);

#ifdef NAND_NO_RB
	if(command == NAND_CMD_RESET){
		u_char ret_val;
		NanD_Command(nand, NAND_CMD_STATUS);
		do{
			ret_val = READ_NAND(nandptr);/* wait till ready */
		} while((ret_val & 0x40) != 0x40);
	}
#endif
	return NanD_WaitReady(nand, 0);
}

/* NanD_Address: Set the current address for the flash chip */

static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs)
{
	unsigned long nandptr;
	int i;

	nandptr = nand->IO_ADDR;

	/* Assert the ALE (Address Latch Enable) line to the flash chip */
	NAND_CTL_SETALE(nandptr);

	/* Send the address */
	/* Devices with 256-byte page are addressed as:
	 * Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
	 * there is no device on the market with page256
	 * and more than 24 bits.
	 * Devices with 512-byte page are addressed as:
	 * Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
	 * 25-31 is sent only if the chip support it.
	 * bit 8 changes the read command to be sent
	 * (NAND_CMD_READ0 or NAND_CMD_READ1).
	 */

	if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE)
		WRITE_NAND_ADDRESS(ofs, nandptr);

	ofs = ofs >> nand->page_shift;

	if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE)
		for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8)
			WRITE_NAND_ADDRESS(ofs, nandptr);

	/* Lower the ALE line */
	NAND_CTL_CLRALE(nandptr);

	/* Wait for the chip to respond */
	return NanD_WaitReady(nand, 1);
}

/* NanD_SelectChip: Select a given flash chip within the current floor */

static __inline int NanD_SelectChip(struct nand_chip *nand, int chip)
{
	/* Wait for it to be ready */
	return NanD_WaitReady(nand, 0);
}

/* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */

static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip)
{
	int mfr, id, i;

	NAND_ENABLE_CE(nand);  /* set pin low */
	/* Reset the chip */
	if (NanD_Command(nand, NAND_CMD_RESET)) {
		NAND_DISABLE_CE(nand);  /* set pin high */
		return 0;
	}

	/* Read the NAND chip ID: 1. Send ReadID command */
	if (NanD_Command(nand, NAND_CMD_READID)) {
		NAND_DISABLE_CE(nand);  /* set pin high */
		return 0;
	}

	/* Read the NAND chip ID: 2. Send address byte zero */
	NanD_Address(nand, ADDR_COLUMN, 0);

	/* Read the manufacturer and device id codes from the device */

	mfr = READ_NAND(nand->IO_ADDR);

	id = READ_NAND(nand->IO_ADDR);
	NAND_DISABLE_CE(nand);  /* set pin high */

	/* No response - return failure */
	if (mfr == 0xff || mfr == 0)
		return 0;

	/* Check it's the same as the first chip we identified.
	 * M-Systems say that any given nand_chip device should only
	 * contain _one_ type of flash part, although that's not a
	 * hardware restriction. */
	if (nand->mfr) {
		if (nand->mfr == mfr && nand->id == id)
			return 1;	/* This is another the same the first */
	}

	/* Print and store the manufacturer and ID codes. */
	for (i = 0; nand_flash_ids[i].name != NULL; i++)
	{
		if (mfr == nand_flash_ids[i].manufacture_id &&
		    id == nand_flash_ids[i].model_id)
		{
			if (!nand->mfr) {
				nand->mfr = mfr;
				nand->id = id;
				nand->chipshift =
				    nand_flash_ids[i].chipshift;
				nand->page256 = nand_flash_ids[i].page256;
				nand->eccsize = 256;
				if (nand->page256) {
					nand->oobblock = 256;
					nand->oobsize = 8;
					nand->page_shift = 8;
				} else {
					nand->oobblock = 512;
					nand->oobsize = 16;
					nand->page_shift = 9;
				}
				nand->pageadrlen =
				    nand_flash_ids[i].pageadrlen;
				nand->erasesize =
				    nand_flash_ids[i].erasesize;
				memcpy(nand->chips_name,nand_flash_ids[i].name,64);
				/*nand->chips_name =
				    nand_flash_ids[i].name;*/
				return 1;
			}
			return 0;
		}
	}

	return 0;
}

/* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */

static void NanD_ScanChips(struct nand_chip *nand)
{
	int floor, chip;
	int numchips[NAND_MAX_FLOORS];
	int maxchips = NAND_MAX_CHIPS;
	int ret = 1;

	nand->numchips = 0;
	nand->mfr = 0;
	nand->id = 0;

	/* For each floor, find the number of valid chips it contains */
	for (floor = 0; floor < NAND_MAX_FLOORS; floor++)
	{
		ret = 1;
		numchips[floor] = 0;
		for (chip = 0; chip < maxchips && ret != 0; chip++)
		{
			ret = NanD_IdentChip(nand, floor, chip);
			if (ret)
			{
				numchips[floor]++;
				nand->numchips++;
			}
		}
	}

	/* If there are none at all that we recognise, bail */
	if (!nand->numchips)
		return;

	/* Allocate an array to hold the information for each chip */
	//nand->chips = malloc(sizeof(struct Nand) * nand->numchips);
	if (!nand->chips)
		return;

	ret = 0;

	/* Fill out the chip array with {floor, chipno} for each
	 * detected chip in the device. */
	for (floor = 0; floor < NAND_MAX_FLOORS; floor++)
	{
		for (chip = 0; chip < numchips[floor]; chip++)
		{
			nand->chips[ret].floor = floor;
			nand->chips[ret].chip = chip;
			nand->chips[ret].curadr = 0;
			nand->chips[ret].curmode = 0x50;
			ret++;
		}
	}

	/* Calculate and print the total size of the device */
	nand->totlen = nand->numchips * (1 << nand->chipshift);

}//NanD_ScanChips()

/* we need to be fast here, 1 us per read translates to 1 second per meg */
static void NanD_ReadBuf(struct nand_chip *nand, u_char *data_buf, int cntr)
{
	unsigned long nandptr = nand->IO_ADDR;

	while (cntr >= 16) {
		*data_buf++ = READ_NAND(nandptr);
		*data_buf++ = READ_NAND(nandptr);
		*data_buf++ = READ_NAND(nandptr);
		*data_buf++ = READ_NAND(nandptr);
		*data_buf++ = READ_NAND(nandptr);
		*data_buf++ = READ_NAND(nandptr);
		*data_buf++ = READ_NAND(nandptr);
		*data_buf++ = READ_NAND(nandptr);
		*data_buf++ = READ_NAND(nandptr);
		*data_buf++ = READ_NAND(nandptr);
		*data_buf++ = READ_NAND(nandptr);
		*data_buf++ = READ_NAND(nandptr);
		*data_buf++ = READ_NAND(nandptr);
		*data_buf++ = READ_NAND(nandptr);
		*data_buf++ = READ_NAND(nandptr);
		*data_buf++ = READ_NAND(nandptr);
		cntr -= 16;
	}

	while (cntr > 0) {
		*data_buf++ = READ_NAND(nandptr);
		cntr--;
	}
}

/*
 * NAND read with ECC
 */
static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
		 size_t * retlen, u_char *buf, u_char *ecc_code)
{
	int col, page;
	int ecc_status = 0;
#ifdef CONFIG_MTD_NAND_ECC
	int j;
	int ecc_failed = 0;
	u_char *data_poi;
	u_char ecc_calc[6];
#endif

	/* Do not allow reads past end of device */
	if ((start + len) > nand->totlen) {
		//printf ("%s: Attempt read beyond end of device %x %x %x\n", __FUNCTION__, (uint) start, (uint) len, (uint) nand->totlen);
		*retlen = 0;
		return -1;
	}

	/* First we calculate the starting page */
	/*page = shr(start, nand->page_shift);*/
	page = start >> nand->page_shift;

	/* Get raw starting column */
	col = start & (nand->oobblock - 1);

	/* Initialize return value */
	*retlen = 0;

	/* Select the NAND device */
	NAND_ENABLE_CE(nand);  /* set pin low */

	/* Loop until all data read */
	while (*retlen < len) {


#ifdef CONFIG_MTD_NAND_ECC

		/* Do we have this page in cache ? */
		if (nand->cache_page == page)
			goto readdata;
		/* Send the read command */
		NanD_Command(nand, NAND_CMD_READ0);
		NanD_Address(nand, ADDR_COLUMN_PAGE, (page << nand->page_shift) + col);
		/* Read in a page + oob data */
		NanD_ReadBuf(nand, nand->data_buf, nand->oobblock + nand->oobsize);

		/* copy data into cache, for read out of cache and if ecc fails */
		if (nand->data_cache)
			memcpy (nand->data_cache, nand->data_buf, nand->oobblock + nand->oobsize);

		/* Pick the ECC bytes out of the oob data */
		for (j = 0; j < 6; j++)
			ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])];

		/* Calculate the ECC and verify it */
		/* If block was not written with ECC, skip ECC */
		if (oob_config.eccvalid_pos != -1 &&
		    (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -