📄 xgmp2.m
字号:
% xgmp2.m
% Scope: This MATLAB program generates second order Gauss-Markov sequence,
% plots the generated sequence and determines and plots the
% normalized auto-correlation sequence.
% Usage: xgmp2
% Inputs: - number of steps in the sequence to be generated (nstep)
% - the value of the natural frequency in radians/second
% - the value of the damping factor (less than 1.)
% - the value of the constant c**2 in meters**2
% - the value of the time step in seconds
% - value of the initial seed, default value is 0
% - name of the output file, if the generated data are saved
% Outputs: - plot of the second order Gauss-Markov sequence - first state
% component
% - plot of the second order Gauss-Markov sequence - second state
% component
% - plot of the normalized auto-correlation sequence - first state
% component (optional)
% - plot of the normalized auto-correlation sequence - second state
% component (optional)
% Remark: A default set of input data is provided.
% External Matlab macros used: genrn, gmp2, rms, xcorr (from Signal
% Processing Toolbox) - optional
% Last update: 06/28/00
% Copyright (C) 1996-00 by LL Consulting. All Rights Reserved.
clear
close all
yes = 'y';
% Initialization - input data for second order Gauss-Markov process
disp(' ');
disp('Specify the number of steps in the sequence.');
nstep = input('Example : 256, 512, 1024, 2048, 4096; Make selection --> ');
disp(' ');
answer1 = input('Do you want to use the default data? (y/n)[y] ','s');
if isempty(answer1)
answer1 = yes;
end
if (strcmp(answer1,yes) == 1)
w0 = 0.012; % natural frequency in radians/second
beta = 0.707106781; % value of 1/sqrt(2.0) , damping factor
csq = 0.002585; % constant c**2 in meters**2
deltat = 1.0; % time step in seconds
else
w0 = input('Specify the natural frequency in radians/second --> ');
beta = input('Specify the damping factor (less than 1.) --> ');
csq = input('Specify the constant c**2 in meters**2 --> ');
deltat = input('Specify the time step in seconds --> ');
end
disp(' ');
disp('Select the initial seed value, the default is 0');
answer2 = input('Do you want to use the default value? (y/n)[y] ','s');
if isempty(answer2)
answer2 = yes;
end
if (strcmp(answer2,yes) == 1)
iseed = 0;
else
iseed = input('Specify the value --> ');
end
rand('seed',iseed);
disp(' ');
% Generate the second order Gauss-Markov sequence
[xp,xv] = gmp2(nstep,w0,beta,csq,deltat);
% Determine mean, standard deviation and root mean square (rms) for the
% generated second order Gauss-Markov sequence - first state component
xmean = mean(xp);
xstd = std(xp);
xrms = rms(xp);
temp1 = ['mean = ',num2str(xmean)];
temp2 = ['st.dev. = ',num2str(xstd)];
temp3 = ['rms = ',num2str(xrms)];
g = [temp1,' ; ',temp2,' ; ',temp3];
% Plot the second order Gauss-Markov time sequence - first state component
fff = num2str(nstep);
dd = 'Second order Gauss-Markov process - first state component ';
ee = 'First state component';
ff = 'Time sequence (Total sequence length = ';
ff = [ff fff ')'];
disp('Execute second order Gauss-Markov process graph - first component -');
disp('Select the mouse position to insert text on the graph.');
disp('Press a key to continue...');
pause
figure(1)
subplot(2,1,1)
plot(xp),...
title(dd), ylabel(ee), xlabel(ff), grid,...
gtext(g); % mouse placement of the text on a graph
disp(' ');
disp('Executed graph - check the window associated to this figure.');
disp('Press a key to continue...');
pause
% Determine mean, standard deviation and root mean square (rms) for the
% generated second order Gauss-Markov sequence - second state component
xmean = mean(xv);
xstd = std(xv);
xrms = rms(xv);
temp1 = ['mean = ',num2str(xmean)];
temp2 = ['st.dev. = ',num2str(xstd)];
temp3 = ['rms = ',num2str(xrms)];
g = [temp1,' ; ',temp2,' ; ',temp3];
% Plot the second order Gauss-Markov time sequence - second state component
dd = 'Second order Gauss-Markov process - second state component';
ee = 'Second state component';
disp(' ');
disp('Execute second order Gauss-Markov process graph - second component -');
disp('Select the mouse position to insert text on the graph.');
disp('Press a key to continue...');
pause
figure(1)
subplot(2,1,2)
plot(xv),...
title(dd), ylabel(ee), xlabel(ff), grid,...
gtext(g); % mouse placement of the text on a graph
disp(' ');
disp('Executed graph - check the window associated to this figure.');
disp('Press a key to continue...');
pause
% Plot the normalized auto-correlation sequence
disp(' ');
disp('For the auto-correlation sequence (first/second state component) - ');
disp(' the function XCORR from Signal Processing Toolbox is required.');
answer3 = input('Plot the auto-correlation sequence? (y/n)[y] --> ','s');
if isempty(answer3)
answer3 = yes;
end
disp(' ');
% Plot the normalized auto-correlation sequence - first state component
if strcmp(answer3,yes) == 1
b = -(nstep-1):1:(nstep-1);
a = xcorr(xp','coeff');
aa = 'Second order Gauss-Markov process - first state component';
bb = 'Normalized auto-correlation sequence';
cc = 'Sequence lag (Total sequence length = ';
cc = [cc fff ')'];
figure(2)
subplot(2,1,1)
plot(b,a'),...
title(aa), ylabel(bb), xlabel(cc), grid;
end
% Plot the normalized auto-correlation sequence - second state component
if strcmp(answer3,yes) == 1
a = xcorr(xv','coeff');
aa = 'Second order Gauss-Markov process - second state component';
bb = 'Normalized auto-correlation sequence';
figure(2)
subplot(2,1,2)
plot(b,a'),...
title(aa), ylabel(bb), xlabel(cc), grid;
disp('Auto-correlation graph - check the window associated to this figure.');
disp('Press a key to continue...');
disp(' ');
pause
end
% Save the generated data into a specified file if desired
answer4 = input('Do you want to save the generated data? (y/n)[y] --> ','s');
if isempty(answer4)
answer4 = yes;
end
if strcmp(answer4,yes) == 1
disp(' ');
f2 = input('Specify the output filename --> ','s');
for k = 1:nstep
fprintf(f2,'%24.14e %24.14e\n',xp(k),xv(k));
end
end
disp(' ');
disp('End of the program XGMP2');
disp(' ');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -