📄 l_curve.m
字号:
function [reg_corner,rho,eta,reg_param] = l_curve(U,sm,b,method,L,V)%L_CURVE Plot the L-curve and find its "corner".%% [reg_corner,rho,eta,reg_param] =% l_curve(U,s,b,method)% l_curve(U,sm,b,method) , sm = [sigma,mu]% l_curve(U,s,b,method,L,V)%% Plots the L-shaped curve of eta, the solution norm || x || or% semi-norm || L x ||, as a function of rho, the residual norm% || A x - b ||, for the following methods:% method = 'Tikh' : Tikhonov regularization (solid line )% method = 'tsvd' : truncated SVD or GSVD (o markers )% method = 'dsvd' : damped SVD or GSVD (dotted line)% method = 'mtsvd' : modified TSVD (x markers )% The corresponding reg. parameters are returned in reg_param. If no% method is specified then 'Tikh' is default. For other methods use plot_lc.%% Note that 'Tikh', 'tsvd' and 'dsvd' require either U and s (standard-% form regularization) or U and sm (general-form regularization), while% 'mtvsd' requires U and s as well as L and V.%% If any output arguments are specified, then the corner of the L-curve% is identified and the corresponding reg. parameter reg_corner is% returned. Use routine l_corner if an upper bound on eta is required.% Reference: P. C. Hansen & D. P. O'Leary, "The use of the L-curve in% the regularization of discrete ill-posed problems", SIAM J. Sci.% Comput. 14 (1993), pp. 1487-1503.% Per Christian Hansen, IMM, July 26, 2007.% Set defaults.if (nargin==3), method='Tikh'; end % Tikhonov reg. is default.npoints = 200; % Number of points on the L-curve for Tikh and dsvd.smin_ratio = 16*eps; % Smallest regularization parameter.% Initialization.[m,n] = size(U); [p,ps] = size(sm);if (nargout > 0), locate = 1; else locate = 0; endbeta = U'*b; beta2 = norm(b)^2 - norm(beta)^2;if (ps==1) s = sm; beta = beta(1:p);else s = sm(p:-1:1,1)./sm(p:-1:1,2); beta = beta(p:-1:1);endxi = beta(1:p)./s;if (strncmp(method,'Tikh',4) | strncmp(method,'tikh',4)) eta = zeros(npoints,1); rho = eta; reg_param = eta; s2 = s.^2; reg_param(npoints) = max([s(p),s(1)*smin_ratio]); ratio = (s(1)/reg_param(npoints))^(1/(npoints-1)); for i=npoints-1:-1:1, reg_param(i) = ratio*reg_param(i+1); end for i=1:npoints f = s2./(s2 + reg_param(i)^2); eta(i) = norm(f.*xi); rho(i) = norm((1-f).*beta(1:p)); end if (m > n & beta2 > 0), rho = sqrt(rho.^2 + beta2); end marker = '-'; txt = 'Tikh.';elseif (strncmp(method,'tsvd',4) | strncmp(method,'tgsv',4)) eta = zeros(p,1); rho = eta; eta(1) = abs(xi(1))^2; for k=2:p, eta(k) = eta(k-1) + abs(xi(k))^2; end eta = sqrt(eta); if (m > n) if (beta2 > 0), rho(p) = beta2; else rho(p) = eps^2; end else rho(p) = eps^2; end for k=p-1:-1:1, rho(k) = rho(k+1) + abs(beta(k+1))^2; end rho = sqrt(rho); reg_param = (1:p)'; marker = 'o'; if (ps==1) U = U(:,1:p); txt = 'TSVD'; else U = U(:,1:p); txt = 'TGSVD'; endelseif (strncmp(method,'dsvd',4) | strncmp(method,'dgsv',4)) eta = zeros(npoints,1); rho = eta; reg_param = eta; reg_param(npoints) = max([s(p),s(1)*smin_ratio]); ratio = (s(1)/reg_param(npoints))^(1/(npoints-1)); for i=npoints-1:-1:1, reg_param(i) = ratio*reg_param(i+1); end for i=1:npoints f = s./(s + reg_param(i)); eta(i) = norm(f.*xi); rho(i) = norm((1-f).*beta(1:p)); end if (m > n & beta2 > 0), rho = sqrt(rho.^2 + beta2); end marker = ':'; if (ps==1), txt = 'DSVD'; else txt = 'DGSVD'; endelseif (strncmp(method,'mtsv',4)) if (nargin~=6) error('The matrices L and V must also be specified') end [p,n] = size(L); rho = zeros(p,1); eta = rho; [Q,R] = qr(L*V(:,n:-1:n-p),0); for i=1:p k = n-p+i; Lxk = L*V(:,1:k)*xi(1:k); zk = R(1:n-k,1:n-k)\(Q(:,1:n-k)'*Lxk); zk = zk(n-k:-1:1); eta(i) = norm(Q(:,n-k+1:p)'*Lxk); if (i < p) rho(i) = norm(beta(k+1:n) + s(k+1:n).*zk); else rho(i) = eps; end end if (m > n & beta2 > 0), rho = sqrt(rho.^2 + beta2); end reg_param = (n-p+1:n)'; txt = 'MTSVD'; U = U(:,reg_param); sm = sm(reg_param); marker = 'x'; ps = 2; % General form regularization.else error('Illegal method')end% Locate the "corner" of the L-curve, if required.if (locate) [reg_corner,rho_c,eta_c] = l_corner(rho,eta,reg_param,U,sm,b,method);end% Make plot.plot_lc(rho,eta,marker,ps,reg_param);if locate ax = axis; HoldState = ishold; hold on; loglog([min(rho)/100,rho_c],[eta_c,eta_c],':r',... [rho_c,rho_c],[min(eta)/100,eta_c],':r') title(['L-curve, ',txt,' corner at ',num2str(reg_corner)]); axis(ax) if (~HoldState), hold off; endend
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -