📄 lsqi.m
字号:
function [x_alpha,lambda] = lsqi(U,s,V,b,alpha,x_0)%LSQI Least squares minimizaiton with a quadratic inequality constraint.%% [x_alpha,lambda] = lsqi(U,s,V,b,alpha,x_0)% [x_alpha,lambda] = lsqi(U,sm,X,b,alpha,x_0) , sm = [sigma,mu]%% Least squares minimization with a quadratic inequality constraint:% min || A x - b || subject to || x - x_0 || <= alpha% min || A x - b || subject to || L (x - x_0) || <= alpha% where x_0 is an initial guess of the solution, and alpha is a% positive constant. Requires either the compact SVD of A saved as% U, s, and V, or part of the GSVD of (A,L) saved as U, sm, and X.% The regularization parameter lambda is also returned.%% If alpha is a vector, then x_alpha is a matrix such that% x_alpha = [ x_alpha(1), x_alpha(2), ... ] .%% If x_0 is not specified, x_0 = 0 is used.% Reference: T. F. Chan, J. Olkin & D. W. Cooley, "Solving quadratically% constrained least squares using block box unconstrained solvers",% BIT 32 (1992), 481-495.% Extension to the case x_0 ~= 0 by Per Chr. Hansen, IMM, 11/20/91.% Key point: the initial lambda is almost unaffected by x_0 because% || x_unreg || >> || x_0 ||.% Per Christian Hansen, IMM, August 6, 2007.% Initialization.m = size(U,1); n = size(V,1); [p,ps] = size(s);if (min(alpha)<0) error('Negative inequality constraint alpha')endif (nargin==5), x_0 = zeros(n,1); endla = length(alpha);x_alpha = zeros(n,la); lambda = zeros(la,1);snz = length(find(s(:,1)>0)); beta = U'*b;% If alpha > || x_LS - x_0 || then return x_LS, otherwise compute% lambda via Hebden-Newton iteration using a good initial guess.% The initial guess lambda_0 is a modified version of the one from% the Chan-Olkin-Cooley paper.if (ps == 1) xi = beta(1:snz)./s(1:snz); omega = V'*x_0; s2 = s.^2; x_unreg = V(:,1:snz)*xi; norm_x_unreg = norm(x_unreg - x_0); for k=1:la if (norm_x_unreg <= alpha(k)) x_alpha(:,k) = x_unreg; lambda(k) = 0; else lambda_0 = s(snz)*(norm_x_unreg/alpha(k) - 1); lambda(k) = heb_new(lambda_0,alpha(k),s,beta,omega); e = s./(s2 + lambda(k)^2); f = s.*e; x_alpha(:,k) = V(:,1:p)*(e.*beta + (1-f).*omega); end endelse if (m>=n) x_u = V(:,p+1:n)*beta(p+1:n); else x_u = V(:,p+1:m)*beta(p+1:m); end ps1 = p-snz+1; xi = beta(ps1:p)./s(ps1:p,1); gamma = s(:,1)./s(:,2); omega = V\x_0; omega = omega(1:p); x_unreg = V(:,ps1:p)*xi + x_u; norm_Lx_unreg = norm(s(ps1:p,2).*(xi - omega(ps1:p))); for k=1:la if (norm_Lx_unreg <= alpha(k)) x_alpha(:,k) = x_unreg; lambda(k) = 0; else lambda_0 = (s(ps1,1)/s(ps1,2))*(norm_Lx_unreg/alpha(k) - 1); lambda(k) = heb_new(lambda_0,alpha(k),s,beta(1:p),omega); e = gamma./(gamma.^2 + lambda(k)^2); f = gamma.*e; x_alpha(:,k) = V(:,1:p)*(e.*beta(1:p)./s(:,2) + ... (1-f).*s(:,2).*omega) + x_u; end endend%------------------------------------------------------------------function lambda = heb_new(lambda_0,alpha,s,beta,omega)%HEB_NEW Newton iteration with Hebden model (utility routine for LSQI).%% lambda = heb_new(lambda_0,alpha,s,beta,omega)%% Uses Newton iteration with a Hebden (rational) model to find the% solution lambda to the secular equation% || L (x_lambda - x_0) || = alpha ,% where x_lambda is the solution defined by Tikhonov regularization.%% The initial guess is lambda_0.%% The norm || L (x_lambda - x_0) || is computed via s, beta and omega.% Here, s holds either the singular values of A, if L = I, or the% c,s-pairs of the GSVD of (A,L), if L ~= I. Moreover, beta = U'*b% and omega is either V'*x_0 or the first p elements of inv(X)*x_0.% Reference: T. F. Chan, J. Olkin & D. W. Cooley, "Solving quadratically% constrained least squares using block box unconstrained solvers",% BIT 32 (1992), 481-495.% Extension to the case x_0 ~= 0 by Per Chr. Hansen, IMM, 11/20/91.% Per Christian Hansen, IMM, 12/29/97.% Set defaults.thr = sqrt(eps); % Relative stopping criterion.it_max = 50; % Max number of iterations.% Initialization.if (lambda_0 < 0) error('Initial guess lambda_0 must be nonnegative')end[p,ps] = size(s);if (ps==2), mu = s(:,2); s = s(:,1)./s(:,2); ends2 = s.^2;% Iterate, using Hebden-Newton iteration, i.e., solve the nonlinear% problem || L x ||^(-2) - alpha^(-2) = 0. This version was found% experimentally to work slight鎦 better than Newton's method for% alpha-values near || L x^exact ||.lambda = lambda_0; step = 1; it = 0;while (abs(step) > thr*lambda & it < it_max), it = it+1; e = s./(s2 + lambda^2); f = s.*e; if (ps==1) Lx = e.*beta - f.*omega; else Lx = e.*beta - f.*mu.*omega; end norm_Lx = norm(Lx); Lv = lambda^2*Lx./(s2 + lambda^2); step = (lambda/4)*(norm_Lx^2 - alpha^2)/(Lv'*Lx); % Newton step. step = (norm_Lx^2/alpha^2)*step; % Hebden step. lambda = lambda + step; if (lambda < 0), lambda = 2*lambda_0; lambda_0 = 2*lambda_0; endend% Terminate with an error if too many iterations.if (abs(step) > thr*lambda), error('Max. number of iterations reached'), end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -