📄 cgsvd.m
字号:
function [U,sm,X,V,W] = cgsvd(A,L)%CGSVD Compact generalized SVD of a matrix pair in regularization problems.%% sm = cgsvd(A,L)% [U,sm,X,V] = cgsvd(A,L) , sm = [sigma,mu]% [U,sm,X,V,W] = cgsvd(A,L) , sm = [sigma,mu]%% Computes the generalized SVD of the matrix pair (A,L). The dimensions of% A and L must be such that [A;L] does not have fewer rows than columns.%% If m >= n >= p then the GSVD has the form:% [ A ] = [ U 0 ]*[ diag(sigma) 0 ]*inv(X)% [ L ] [ 0 V ] [ 0 eye(n-p) ]% [ diag(mu) 0 ]% where% U is m-by-n , sigma is p-by-1% V is p-by-p , mu is p-by-1% X is n-by-n .%% Otherwise the GSVD has a more complicated form (see manual for details).%% A possible fifth output argument returns W = inv(X). % Reference: C. F. Van Loan, "Computing the CS and the generalized % singular value decomposition", Numer. Math. 46 (1985), 479-491. % Per Christian Hansen, IMM, March 17, 2008. % Initialization.[m,n] = size(A); [p,n1] = size(L);if (n1 ~= n) error('No. columns in A and L must be the same')endif (m+p < n) error('Dimensions must satisfy m+p >= n')end% Call Matlab's GSVD routine.[U,V,W,C,S] = gsvd(full(A),full(L),0);if (m >= n) % The overdetermined or square case. sm = [diag(C(1:p,1:p)),diag(S(1:p,1:p))]; if (nargout < 2) U = sm; else % Full decomposition. X = inv(W'); endelse % The underdetermined case. sm = [diag(C(1:m+p-n,n-m+1:p)),diag(S(n-m+1:p,n-m+1:p))]; if (nargout < 2) U = sm; else % Full decomposition. X = inv(W'); X = X(:,n-m+1:n); endendif (nargout==5), W = W'; end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -