⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cgls.3.man

📁 COOOL:CWP面向对象最优化库(CWP Object Oriented Optimization Library) COOOL是C++类的一个集合
💻 MAN
字号:
CGLS(derived)     OPTIMIZATION ALGORITHMS      CGLS(derived)                                                     Jun  1 15:17NAME    CGLS - Conjugate Gradient for Least SquaresSYNOPSIS    #include <CGLS.hh>    class LSConjugateGradient : public QuadraticOptima        \fIPublic members\fP            LSConjugateGradient(int, LinearForward*,            Vector<double>*, int, double);            LSConjugateGradient(int, LinearForward*,            Vector<double>*, int, double, int);            ~LSConjugateGradient();            Model<double> 	optimizer(Model<double>&);            Model<long> 	optimizer(Model<long>&) { return 0;}            };            #endif        \fIProtected members\fP            double		alpha;            double		scale;            double		scaleOld;            Vector<double>*	search;            Vector<double>*	modelError;            Vector<double>*	dataError;            void		getModelError(Vector<double>&);            void		conjugateDirection();            void		upDating();DESCRIPTION    LSConjugateGradient()    The conjugate gradient implemented here should be used for the     solution of the normal equations A^T.A.x = A^T.y. It is coded     such that the product A^T.A is never performed, to avoid    numerical instabilities and non sparse matrices. This procedure     comes straight from the classical paper "Methods of conjugate     gradients for solving linear systems:, 1952, NBS J. Research    by Hesteness and Stiefel.DESCRIPTION    Constructors:    LSConjugateGradient(int ???, LinearForward* ???,                         Vector<double>* ???, int ???, double ???);    LSConjugateGradient(int ???, LinearForward* ???, Vector<double>* ???,                         int ???, double ???, int ???);    ???...    Method:     Model<double> optimizer(Model<double>& model0);      model0:  Initial model for the CGLS procedure.      The optimum model is returned by the function.CAVEATS    Hmmm, there are no bugs in this code. The caveats that     I can think off are related to the facts that you are using     least squares, like sensitivity to outliers, non gaussian     statistics and so on :^). So...you are at your own risk.DEFINED MACROS    CGLS_HHINCLUDED FILES    "QuaOptima.hh"SOURCE FILES    CGLS.cc

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -