📄 cgls.3.man
字号:
CGLS(derived) OPTIMIZATION ALGORITHMS CGLS(derived) Jun 1 15:17NAME CGLS - Conjugate Gradient for Least SquaresSYNOPSIS #include <CGLS.hh> class LSConjugateGradient : public QuadraticOptima \fIPublic members\fP LSConjugateGradient(int, LinearForward*, Vector<double>*, int, double); LSConjugateGradient(int, LinearForward*, Vector<double>*, int, double, int); ~LSConjugateGradient(); Model<double> optimizer(Model<double>&); Model<long> optimizer(Model<long>&) { return 0;} }; #endif \fIProtected members\fP double alpha; double scale; double scaleOld; Vector<double>* search; Vector<double>* modelError; Vector<double>* dataError; void getModelError(Vector<double>&); void conjugateDirection(); void upDating();DESCRIPTION LSConjugateGradient() The conjugate gradient implemented here should be used for the solution of the normal equations A^T.A.x = A^T.y. It is coded such that the product A^T.A is never performed, to avoid numerical instabilities and non sparse matrices. This procedure comes straight from the classical paper "Methods of conjugate gradients for solving linear systems:, 1952, NBS J. Research by Hesteness and Stiefel.DESCRIPTION Constructors: LSConjugateGradient(int ???, LinearForward* ???, Vector<double>* ???, int ???, double ???); LSConjugateGradient(int ???, LinearForward* ???, Vector<double>* ???, int ???, double ???, int ???); ???... Method: Model<double> optimizer(Model<double>& model0); model0: Initial model for the CGLS procedure. The optimum model is returned by the function.CAVEATS Hmmm, there are no bugs in this code. The caveats that I can think off are related to the facts that you are using least squares, like sensitivity to outliers, non gaussian statistics and so on :^). So...you are at your own risk.DEFINED MACROS CGLS_HHINCLUDED FILES "QuaOptima.hh"SOURCE FILES CGLS.cc
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -