📄 dma.c
字号:
// DMA0_UART2_0, DMA0_UART2_1, DMA0_UART3_0, DMA0_UART3_1,
// DMA0_PCM0_TX,DMA0_PCM0_RX, DMA0_I2S0_TX, DMA0_I2S0_RX,
// DMA0_SPI0_TX, DMA0_SPI0_RX, DMA0_HSI_TX, DMA0_HSI_RX,
// [DMAC1, SDMAC1]
// DMA1_PCM1_TX, DMA1_PCM1_RX, DMA1_I2S1_TX, DMA1_I2S1_RX,
// DMA1_SPI1_TX, DMA1_SPI1_RX, DMA1_AC_PCMout, DMA1_AC_PCMin,
// DMA1_AC_MICin, DMA1_PWM, DMA1_IrDA, DMA1_EXTERNAL
// SDMA1_SECU_RX, SDMA1_SEXU_TX => Only SDMAC1
// eBurstMode : Burst Size,
// SINGLE, BURST4, BURST8, BURST16, BURST32, BURST64, BURST128, BURST256
//
// Output : void
//
// Version : v0.1
void DMACH_Setup(
DMA_CH eCh, u32 uLLIAddr, u32 uSrcAddr, bool bSrcFixed, u32 uDstAddr, bool bDstFixed, DATA_SIZE eDataSz, u32 uDataCnt,
DMA_HS_MODE eOpMode, DREQ_SRC eSrcReq, DREQ_SRC eDstReq, BURST_MODE eBurstMode, DMAC *sCh)
{
u32 uReg;
u32 uBurstSz;
u32 uTrWidth;
u32 uTCEnable;
DMA_AHB eSrcAhb, eDstAhb;
switch(eCh)
{
case DMA_A: sCh->m_uChAddr = DMA_CH0; break;
case DMA_B: sCh->m_uChAddr = DMA_CH1; break;
case DMA_C: sCh->m_uChAddr = DMA_CH2; break;
case DMA_D: sCh->m_uChAddr = DMA_CH3; break;
case DMA_E: sCh->m_uChAddr = DMA_CH4; break;
case DMA_F: sCh->m_uChAddr = DMA_CH5; break;
case DMA_G: sCh->m_uChAddr = DMA_CH6; break;
case DMA_H: sCh->m_uChAddr = DMA_CH7; break;
default : Assert(0);
}
Assert(uDataCnt < 0x2000000);
#if 0
if((eSrcReq == MEM) || (eSrcReq == DMA0_OND_TX))
eSrcAhb = AHB_MASTER1;
else if(eSrcReq == DMA1_NAND_TX)
eSrcAhb = AHB_MASTER2;
else
eSrcAhb = AHB_MASTER2;
if((eDstReq == MEM) || (eDstReq == DMA0_OND_RX))
eDstAhb = AHB_MASTER1;
else if(eDstReq == DMA1_NAND_RX)
eDstAhb = AHB_MASTER2;
else
eDstAhb = AHB_MASTER2;
#else
if((eSrcReq == MEM) || (eSrcReq == DMA0_OND_TX)|| (eSrcReq == DMA1_EXTERNAL))
eSrcAhb = AHB_MASTER1;
else if(eSrcReq == DMA1_NAND_TX)
eSrcAhb = AHB_MASTER2;
else
eSrcAhb = AHB_MASTER2;
if((eDstReq == MEM) || (eDstReq == DMA0_OND_RX)|| (eDstReq == DMA1_EXTERNAL))
eDstAhb = AHB_MASTER1;
else if(eDstReq == DMA1_NAND_RX)
eDstAhb = AHB_MASTER2;
else
eDstAhb = AHB_MASTER2;
#endif
DmaChOutp32(DMA_CH_SRCADDR, uSrcAddr);
DmaChOutp32(DMA_CH_DSTADDR, uDstAddr);
switch(eDataSz)
{
case WORD : uTrWidth = ((2<<21)|(2<<18));break;
case HWORD : uTrWidth = ((1<<21)|(1<<18));break;
case BYTE : uTrWidth = ((0<<21)|(0<<18));break;
default : Assert(0);
}
switch(eBurstMode)
{
case SINGLE : uBurstSz = ((0<<15)|(0<<12));break;
case BURST4 : uBurstSz = ((1<<15)|(1<<12));break;
case BURST8 : uBurstSz = ((2<<15)|(2<<12));break;
case BURST16 : uBurstSz = ((3<<15)|(3<<12));break;
case BURST32 : uBurstSz = ((4<<15)|(4<<12));break;
case BURST64 : uBurstSz = ((5<<15)|(5<<12));break;
case BURST128 : uBurstSz = ((6<<15)|(6<<12));break;
case BURST256 : uBurstSz = ((7<<15)|(7<<12));break;
default : Assert(0);
}
//Channel LLI Register Setting => not using => 0x0
uReg =
(uLLIAddr&~(0x3))|
(AHB_MASTER1);
DmaChOutp32(DMA_CH_LLI, uReg);
if(uLLIAddr == 0)
uTCEnable = 1;
else
uTCEnable = 0;
// Channel Control Register0 Setting
// [31]: Terminal Count interrupt
uReg =
(uTCEnable<<31) |
(bDstFixed? 0 : 1)<<27 |
(bSrcFixed? 0 : 1)<<26 |
(eDstAhb? 1 : 0)<<25 |
(eSrcAhb? 1 : 0)<<24 |
(uTrWidth) |
(uBurstSz);
DmaChOutp32(DMA_CH_CONTROL0, uReg);
// Channel Control Register1 Setting => Transfer Size
DmaChOutp32(DMA_CH_CONTROL1, uDataCnt);
// Channel Configuration Register1 Setting
#if 1
uReg =
(0<<18) | // enable DMA requests
(0<<16) | // disables locked transfers
(1<<15) | // Teminal count interrupt enable
(0<<14) | // Interrupt error mask
((((eSrcReq == MEM)||(eSrcReq == DMA1_NAND_TX)||(eSrcReq == DMA0_OND_TX))? 0 : 1)<<12) |
(((eDstReq == DMA0_OND_RX)? 1 : 0)<<10) |
((((eDstReq == MEM)||(eDstReq == DMA1_NAND_RX)||(eDstReq == DMA0_OND_RX))? 0 : 1)<<11) |
(((eDstReq == MEM)? 0:eDstReq)<<6) | // DstPerpheral
(((eSrcReq == DMA0_OND_TX)? 1 : 0)<<5) |
(((eSrcReq == MEM)? 0:eSrcReq)<<1) ; // SrcPeripheral
#else
uReg =
(0<<18) | // enable DMA requests
(0<<16) | // disables locked transfers
(1<<15) | // Teminal count interrupt enable
(0<<14) | // Interrupt error mask
((((eSrcReq == MEM)||(eSrcReq == DMA1_NAND_TX)||(eSrcReq == DMA0_OND_TX)||(eSrcReq == DMA1_EXTERNAL))? 0 : 1)<<12) |
(((eDstReq == DMA0_OND_RX)? 1 : 0)<<10) |
((((eDstReq == MEM)||(eDstReq == DMA1_NAND_RX)||(eDstReq == DMA0_OND_RX)||(eDstReq == DMA1_EXTERNAL))? 0 : 1)<<11) |
((((eDstReq == MEM)||(eDstReq == DMA1_EXTERNAL))? 0:eDstReq)<<6) | // DstPerpheral
(((eSrcReq == DMA0_OND_TX)? 1 : 0)<<5) |
((((eSrcReq == MEM)||(eSrcReq == DMA1_EXTERNAL))? 0:eSrcReq)<<1) ; // SrcPeripheral
#endif
// (eDstReq <<6) | // DstPerpheral
// (eSrcReq <<1) ; // SrcPeripheral
DmaChOutp32(DMA_CH_CONFIG, uReg);
}
//////////
// Function Name : DMAC_Start
// Function Description : Enable DMA Channel
// Input : *sCh : DMAC , Enabled Channel address
// Output : void
//
// Version : v0.1
void DMACH_Start(DMAC *sCh)
{
u32 uReg;
uReg = DmaChInp32(DMA_CH_CONFIG);
uReg |= (1<<0); // Channel Enable
DmaChOutp32(DMA_CH_CONFIG, uReg);
}
//////////
// Function Name : DMACH_AddrSetup
// Function Description : Set Source address and destination address.
// Input : eCh : Selected channel.
// uSrcAddr : Source Address
// uDstAddr : Destination Address
//
// Output : void
//
// Version : v0.1
void DMACH_AddrSetup(DMA_CH eCh, u32 uSrcAddr, u32 uDstAddr, DMAC *sCh)
{
switch(eCh)
{
case DMA_A: sCh->m_uChAddr = DMA_CH0; break;
case DMA_B: sCh->m_uChAddr = DMA_CH1; break;
case DMA_C: sCh->m_uChAddr = DMA_CH2; break;
case DMA_D: sCh->m_uChAddr = DMA_CH3; break;
case DMA_E: sCh->m_uChAddr = DMA_CH4; break;
case DMA_F: sCh->m_uChAddr = DMA_CH5; break;
case DMA_G: sCh->m_uChAddr = DMA_CH6; break;
case DMA_H: sCh->m_uChAddr = DMA_CH7; break;
default : Assert(0);
}
DmaChOutp32(DMA_CH_SRCADDR, uSrcAddr);
DmaChOutp32(DMA_CH_DSTADDR, uDstAddr);
}
//////////
// Function Name : DMACH_ReadSrcAddr
// Function Description : Read Source Address
// Input : Structure definition of DMAC
// Output : Source Address
// Version : v0.1
// added by Woojin
u32 DMACH_ReadSrcAddr(DMAC *sCh)
{
return DmaChInp32(DMA_CH_SRCADDR);
}
//////////
// Function Name : DMACH_ReadDstAddr
// Function Description : Read Destination Address
// Input : Structure definition of DMAC
// Output : Destination Address
// Version : v0.1
// added by Woojin
u32 DMACH_ReadDstAddr(DMAC *sCh)
{
return DmaChInp32(DMA_CH_DSTADDR);
}
//added by rb1004
void DMACH_WriteSrcAddr(DMAC *sCh, u32 uSrcAddr)
{
DmaChOutp32(DMA_CH_SRCADDR, uSrcAddr);
}
//added by rb1004
void DMACH_WriteDstAddr(DMAC *sCh, u32 uDstAddr)
{
DmaChOutp32(DMA_CH_DSTADDR, uDstAddr);
}
//added by rb1004
void DMACH_WriteTransferSize(DMAC *sCh, u32 uSize)
{
DmaChOutp32(DMA_CH_CONTROL1, uSize);
}
//added by rb1004
void DMACH_SoftBurstReq(DMAC *sCh, DREQ_SRC eSrcReq)
{
DmaOutp32(DMA_SOFTBREQ, (1<<eSrcReq));
// while(!(DmaInp32(DMA_SOFTBREQ) & (1<<eSrcReq)));
}
//added by rb1004
void DMACH_SoftBurstLastReq(DMAC *sCh, DREQ_SRC eSrcReq)
{
DmaOutp32(DMA_SOFTLBREQ, (1<<eSrcReq));
//while(!(DmaInp32(DMA_SOFTLBREQ) & (1<<eSrcReq)));
}
//////////
// Function Name : DMACH_SetTransferSize
// Function Description : This function sets TransferSize
// Input : Transfer Size
// Output : NONE
// Version : v0.1
// added by Woojin
void DMACH_SetTransferSize(u32 uSize, DMAC *sCh)
{
DmaChOutp32(DMA_CH_CONTROL1, uSize);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -