⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 xfs_super.c

📁 LINUX 2.6.17.4的源码
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA */#include "xfs.h"#include "xfs_bit.h"#include "xfs_log.h"#include "xfs_clnt.h"#include "xfs_inum.h"#include "xfs_trans.h"#include "xfs_sb.h"#include "xfs_ag.h"#include "xfs_dir.h"#include "xfs_dir2.h"#include "xfs_alloc.h"#include "xfs_dmapi.h"#include "xfs_quota.h"#include "xfs_mount.h"#include "xfs_bmap_btree.h"#include "xfs_alloc_btree.h"#include "xfs_ialloc_btree.h"#include "xfs_dir_sf.h"#include "xfs_dir2_sf.h"#include "xfs_attr_sf.h"#include "xfs_dinode.h"#include "xfs_inode.h"#include "xfs_btree.h"#include "xfs_ialloc.h"#include "xfs_bmap.h"#include "xfs_rtalloc.h"#include "xfs_error.h"#include "xfs_itable.h"#include "xfs_rw.h"#include "xfs_acl.h"#include "xfs_cap.h"#include "xfs_mac.h"#include "xfs_attr.h"#include "xfs_buf_item.h"#include "xfs_utils.h"#include "xfs_version.h"#include <linux/namei.h>#include <linux/init.h>#include <linux/mount.h>#include <linux/mempool.h>#include <linux/writeback.h>#include <linux/kthread.h>STATIC struct quotactl_ops xfs_quotactl_operations;STATIC struct super_operations xfs_super_operations;STATIC kmem_zone_t *xfs_vnode_zone;STATIC kmem_zone_t *xfs_ioend_zone;mempool_t *xfs_ioend_pool;STATIC struct xfs_mount_args *xfs_args_allocate(	struct super_block	*sb,	int			silent){	struct xfs_mount_args	*args;	args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);	args->logbufs = args->logbufsize = -1;	strncpy(args->fsname, sb->s_id, MAXNAMELEN);	/* Copy the already-parsed mount(2) flags we're interested in */	if (sb->s_flags & MS_DIRSYNC)		args->flags |= XFSMNT_DIRSYNC;	if (sb->s_flags & MS_SYNCHRONOUS)		args->flags |= XFSMNT_WSYNC;	if (silent)		args->flags |= XFSMNT_QUIET;	args->flags |= XFSMNT_32BITINODES;	return args;}__uint64_txfs_max_file_offset(	unsigned int		blockshift){	unsigned int		pagefactor = 1;	unsigned int		bitshift = BITS_PER_LONG - 1;	/* Figure out maximum filesize, on Linux this can depend on	 * the filesystem blocksize (on 32 bit platforms).	 * __block_prepare_write does this in an [unsigned] long...	 *      page->index << (PAGE_CACHE_SHIFT - bbits)	 * So, for page sized blocks (4K on 32 bit platforms),	 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is	 *      (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)	 * but for smaller blocksizes it is less (bbits = log2 bsize).	 * Note1: get_block_t takes a long (implicit cast from above)	 * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch	 * can optionally convert the [unsigned] long from above into	 * an [unsigned] long long.	 */#if BITS_PER_LONG == 32# if defined(CONFIG_LBD)	ASSERT(sizeof(sector_t) == 8);	pagefactor = PAGE_CACHE_SIZE;	bitshift = BITS_PER_LONG;# else	pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);# endif#endif	return (((__uint64_t)pagefactor) << bitshift) - 1;}STATIC __inline__ voidxfs_set_inodeops(	struct inode		*inode){	switch (inode->i_mode & S_IFMT) {	case S_IFREG:		inode->i_op = &xfs_inode_operations;		inode->i_fop = &xfs_file_operations;		inode->i_mapping->a_ops = &xfs_address_space_operations;		break;	case S_IFDIR:		inode->i_op = &xfs_dir_inode_operations;		inode->i_fop = &xfs_dir_file_operations;		break;	case S_IFLNK:		inode->i_op = &xfs_symlink_inode_operations;		if (inode->i_blocks)			inode->i_mapping->a_ops = &xfs_address_space_operations;		break;	default:		inode->i_op = &xfs_inode_operations;		init_special_inode(inode, inode->i_mode, inode->i_rdev);		break;	}}STATIC __inline__ voidxfs_revalidate_inode(	xfs_mount_t		*mp,	vnode_t			*vp,	xfs_inode_t		*ip){	struct inode		*inode = vn_to_inode(vp);	inode->i_mode	= ip->i_d.di_mode;	inode->i_nlink	= ip->i_d.di_nlink;	inode->i_uid	= ip->i_d.di_uid;	inode->i_gid	= ip->i_d.di_gid;	switch (inode->i_mode & S_IFMT) {	case S_IFBLK:	case S_IFCHR:		inode->i_rdev =			MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,			      sysv_minor(ip->i_df.if_u2.if_rdev));		break;	default:		inode->i_rdev = 0;		break;	}	inode->i_blksize = xfs_preferred_iosize(mp);	inode->i_generation = ip->i_d.di_gen;	i_size_write(inode, ip->i_d.di_size);	inode->i_blocks =		XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);	inode->i_atime.tv_sec	= ip->i_d.di_atime.t_sec;	inode->i_atime.tv_nsec	= ip->i_d.di_atime.t_nsec;	inode->i_mtime.tv_sec	= ip->i_d.di_mtime.t_sec;	inode->i_mtime.tv_nsec	= ip->i_d.di_mtime.t_nsec;	inode->i_ctime.tv_sec	= ip->i_d.di_ctime.t_sec;	inode->i_ctime.tv_nsec	= ip->i_d.di_ctime.t_nsec;	if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)		inode->i_flags |= S_IMMUTABLE;	else		inode->i_flags &= ~S_IMMUTABLE;	if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)		inode->i_flags |= S_APPEND;	else		inode->i_flags &= ~S_APPEND;	if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)		inode->i_flags |= S_SYNC;	else		inode->i_flags &= ~S_SYNC;	if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)		inode->i_flags |= S_NOATIME;	else		inode->i_flags &= ~S_NOATIME;	vp->v_flag &= ~VMODIFIED;}voidxfs_initialize_vnode(	bhv_desc_t		*bdp,	vnode_t			*vp,	bhv_desc_t		*inode_bhv,	int			unlock){	xfs_inode_t		*ip = XFS_BHVTOI(inode_bhv);	struct inode		*inode = vn_to_inode(vp);	if (!inode_bhv->bd_vobj) {		vp->v_vfsp = bhvtovfs(bdp);		bhv_desc_init(inode_bhv, ip, vp, &xfs_vnodeops);		bhv_insert(VN_BHV_HEAD(vp), inode_bhv);	}	/*	 * We need to set the ops vectors, and unlock the inode, but if	 * we have been called during the new inode create process, it is	 * too early to fill in the Linux inode.  We will get called a	 * second time once the inode is properly set up, and then we can	 * finish our work.	 */	if (ip->i_d.di_mode != 0 && unlock && (inode->i_state & I_NEW)) {		xfs_revalidate_inode(XFS_BHVTOM(bdp), vp, ip);		xfs_set_inodeops(inode);		ip->i_flags &= ~XFS_INEW;		barrier();		unlock_new_inode(inode);	}}intxfs_blkdev_get(	xfs_mount_t		*mp,	const char		*name,	struct block_device	**bdevp){	int			error = 0;	*bdevp = open_bdev_excl(name, 0, mp);	if (IS_ERR(*bdevp)) {		error = PTR_ERR(*bdevp);		printk("XFS: Invalid device [%s], error=%d\n", name, error);	}	return -error;}voidxfs_blkdev_put(	struct block_device	*bdev){	if (bdev)		close_bdev_excl(bdev);}/* * Try to write out the superblock using barriers. */STATIC intxfs_barrier_test(	xfs_mount_t	*mp){	xfs_buf_t	*sbp = xfs_getsb(mp, 0);	int		error;	XFS_BUF_UNDONE(sbp);	XFS_BUF_UNREAD(sbp);	XFS_BUF_UNDELAYWRITE(sbp);	XFS_BUF_WRITE(sbp);	XFS_BUF_UNASYNC(sbp);	XFS_BUF_ORDERED(sbp);	xfsbdstrat(mp, sbp);	error = xfs_iowait(sbp);	/*	 * Clear all the flags we set and possible error state in the	 * buffer.  We only did the write to try out whether barriers	 * worked and shouldn't leave any traces in the superblock	 * buffer.	 */	XFS_BUF_DONE(sbp);	XFS_BUF_ERROR(sbp, 0);	XFS_BUF_UNORDERED(sbp);	xfs_buf_relse(sbp);	return error;}voidxfs_mountfs_check_barriers(xfs_mount_t *mp){	int error;	if (mp->m_logdev_targp != mp->m_ddev_targp) {		xfs_fs_cmn_err(CE_NOTE, mp,		  "Disabling barriers, not supported with external log device");		mp->m_flags &= ~XFS_MOUNT_BARRIER;		return;	}	if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered ==					QUEUE_ORDERED_NONE) {		xfs_fs_cmn_err(CE_NOTE, mp,		  "Disabling barriers, not supported by the underlying device");		mp->m_flags &= ~XFS_MOUNT_BARRIER;		return;	}	error = xfs_barrier_test(mp);	if (error) {		xfs_fs_cmn_err(CE_NOTE, mp,		  "Disabling barriers, trial barrier write failed");		mp->m_flags &= ~XFS_MOUNT_BARRIER;		return;	}}voidxfs_blkdev_issue_flush(	xfs_buftarg_t		*buftarg){	blkdev_issue_flush(buftarg->bt_bdev, NULL);}STATIC struct inode *xfs_fs_alloc_inode(	struct super_block	*sb){	vnode_t			*vp;	vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);	if (unlikely(!vp))		return NULL;	return vn_to_inode(vp);}STATIC voidxfs_fs_destroy_inode(	struct inode		*inode){	kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));}STATIC voidxfs_fs_inode_init_once(	void			*vnode,	kmem_zone_t		*zonep,	unsigned long		flags){	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==		      SLAB_CTOR_CONSTRUCTOR)		inode_init_once(vn_to_inode((vnode_t *)vnode));}STATIC intxfs_init_zones(void){	xfs_vnode_zone = kmem_zone_init_flags(sizeof(vnode_t), "xfs_vnode_t",					KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |					KM_ZONE_SPREAD,					xfs_fs_inode_init_once);	if (!xfs_vnode_zone)		goto out;	xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");	if (!xfs_ioend_zone)		goto out_destroy_vnode_zone;	xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,						  xfs_ioend_zone);	if (!xfs_ioend_pool)		goto out_free_ioend_zone;	return 0; out_free_ioend_zone:	kmem_zone_destroy(xfs_ioend_zone); out_destroy_vnode_zone:	kmem_zone_destroy(xfs_vnode_zone); out:	return -ENOMEM;}STATIC voidxfs_destroy_zones(void){	mempool_destroy(xfs_ioend_pool);	kmem_zone_destroy(xfs_vnode_zone);	kmem_zone_destroy(xfs_ioend_zone);}/* * Attempt to flush the inode, this will actually fail * if the inode is pinned, but we dirty the inode again * at the point when it is unpinned after a log write, * since this is when the inode itself becomes flushable. */STATIC intxfs_fs_write_inode(	struct inode		*inode,	int			sync){	vnode_t			*vp = vn_from_inode(inode);	int			error = 0, flags = FLUSH_INODE;	if (vp) {		vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);		if (sync)			flags |= FLUSH_SYNC;		VOP_IFLUSH(vp, flags, error);		if (error == EAGAIN) {			if (sync)				VOP_IFLUSH(vp, flags | FLUSH_LOG, error);			else				error = 0;		}	}	return -error;}STATIC voidxfs_fs_clear_inode(	struct inode		*inode){	vnode_t			*vp = vn_from_inode(inode);	int			error, cache;	vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);	XFS_STATS_INC(vn_rele);	XFS_STATS_INC(vn_remove);	XFS_STATS_INC(vn_reclaim);	XFS_STATS_DEC(vn_active);	/*	 * This can happen because xfs_iget_core calls xfs_idestroy if we	 * find an inode with di_mode == 0 but without IGET_CREATE set.	 */	if (vp->v_fbhv)		VOP_INACTIVE(vp, NULL, cache);	VN_LOCK(vp);	vp->v_flag &= ~VMODIFIED;	VN_UNLOCK(vp, 0);	if (vp->v_fbhv) {		VOP_RECLAIM(vp, error);		if (error)			panic("vn_purge: cannot reclaim");	}	ASSERT(vp->v_fbhv == NULL);#ifdef XFS_VNODE_TRACE	ktrace_free(vp->v_trace);#endif}/* * Enqueue a work item to be picked up by the vfs xfssyncd thread. * Doing this has two advantages: * - It saves on stack space, which is tight in certain situations * - It can be used (with care) as a mechanism to avoid deadlocks. * Flushing while allocating in a full filesystem requires both. */STATIC voidxfs_syncd_queue_work(	struct vfs	*vfs,	void		*data,	void		(*syncer)(vfs_t *, void *)){	vfs_sync_work_t	*work;	work = kmem_alloc(sizeof(struct vfs_sync_work), KM_SLEEP);	INIT_LIST_HEAD(&work->w_list);	work->w_syncer = syncer;	work->w_data = data;	work->w_vfs = vfs;	spin_lock(&vfs->vfs_sync_lock);	list_add_tail(&work->w_list, &vfs->vfs_sync_list);	spin_unlock(&vfs->vfs_sync_lock);	wake_up_process(vfs->vfs_sync_task);}/* * Flush delayed allocate data, attempting to free up reserved space * from existing allocations.  At this point a new allocation attempt * has failed with ENOSPC and we are in the process of scratching our * heads, looking about for more room... */STATIC voidxfs_flush_inode_work(

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -