📄 entry.s
字号:
(via the function `switch_thread'), so callers will save any call-clobbered registers themselves. We do need to save the CT regs, as they're normally not saved during kernel entry (the kernel doesn't use them). We save PSW so that interrupt-status state will correctly follow each thread (mostly NMI vs. normal-IRQ/trap), though for the most part it doesn't matter since threads are always in almost exactly the same processor state during a context switch. The stack pointer and return value are handled by switch_thread itself. */#define SWITCH_STATE_SAVER \ SAVE_CALL_SAVED_REGS; \ SAVE_PSW(PSW); \ SAVE_CT_REGS#define SWITCH_STATE_RESTORER \ RESTORE_CALL_SAVED_REGS; \ RESTORE_PSW(PSW); \ RESTORE_CT_REGS/* Restore register state from the state-save-frame on the stack, switch back to the user stack if necessary, and return from the trap/interrupt. EXTRA_STATE_RESTORER is a sequence of assembly language statements to restore anything not restored by this macro. Only registers not saved by the C compiler are restored (that is, R3(sp), R4(gp), R31(lp), and anything restored by EXTRA_STATE_RESTORER). */#define RETURN(type) \ ld.b PTO+PT_KERNEL_MODE[sp], r19; \ di; /* Disable interrupts */ \ cmp r19, r0; /* See if returning to kernel mode, */\ bne 2f; /* ... if so, skip resched &c. */ \ \ /* We're returning to user mode, so check for various conditions that \ trigger rescheduling. */ \ GET_CURRENT_THREAD(r18); \ ld.w TI_FLAGS[r18], r19; \ andi _TIF_NEED_RESCHED, r19, r0; \ bnz 3f; /* Call the scheduler. */ \5: andi _TIF_SIGPENDING, r19, r18; \ ld.w TASK_PTRACE[CURRENT_TASK], r19; /* ptrace flags */ \ or r18, r19; /* see if either is non-zero */ \ bnz 4f; /* if so, handle them */ \ \/* Return to user state. */ \1: st.b r0, KM; /* Now officially in user state. */ \ \/* Final return. The stack-pointer fiddling is not needed when returning \ to kernel-mode, but they don't hurt, and this way we can share the \ (sometimes rather lengthy) POP_STATE macro. */ \2: POP_STATE(type); \ st.w sp, KSP; /* Save the kernel stack pointer. */ \ ld.w PT_GPR(GPR_SP)-PT_SIZE[sp], sp; /* Restore stack pointer. */ \ type ## _RET; /* Return from the trap/interrupt. */ \ \/* Call the scheduler before returning from a syscall/trap. */ \3: SAVE_EXTRA_STATE_FOR_SCHEDULE(type); /* Prepare to call scheduler. */ \ jarl call_scheduler, lp; /* Call scheduler */ \ di; /* The scheduler enables interrupts */\ RESTORE_EXTRA_STATE_FOR_SCHEDULE(type); \ GET_CURRENT_THREAD(r18); \ ld.w TI_FLAGS[r18], r19; \ br 5b; /* Continue with return path. */ \ \/* Handle a signal or ptraced process return. \ r18 should be non-zero if there are pending signals. */ \4: /* Not all registers are saved by the normal trap/interrupt entry \ points (for instance, call-saved registers (because the normal \ C-compiler calling sequence in the kernel makes sure they're \ preserved), and call-clobbered registers in the case of \ traps), but signal handlers may want to examine or change the \ complete register state. Here we save anything not saved by \ the normal entry sequence, so that it may be safely restored \ (in a possibly modified form) after do_signal returns. */ \ SAVE_EXTRA_STATE(type); /* Save state not saved by entry. */ \ jarl handle_signal_or_ptrace_return, lp; \ RESTORE_EXTRA_STATE(type); /* Restore extra regs. */ \ br 1b/* Jump to the appropriate function for the system call number in r12 (r12 is not preserved), or return an error if r12 is not valid. The LP register should point to the location where the called function should return. [note that MAKE_SYS_CALL uses label 1] */#define MAKE_SYS_CALL \ /* Figure out which function to use for this system call. */ \ shl 2, r12; \ /* See if the system call number is valid. */ \ addi lo(CSYM(sys_call_table) - sys_call_table_end), r12, r0; \ bnh 1f; \ mov hilo(CSYM(sys_call_table)), r19; \ add r19, r12; \ ld.w 0[r12], r12; \ /* Make the system call. */ \ jmp [r12]; \ /* The syscall number is invalid, return an error. */ \1: addi -ENOSYS, r0, r10; \ jmp [lp] .text/* * User trap. * * Trap 0 system calls are also handled here. * * The stack-pointer (r3) should have already been saved to the memory * location ENTRY_SP (the reason for this is that the interrupt vectors may be * beyond a 22-bit signed offset jump from the actual interrupt handler, and * this allows them to save the stack-pointer and use that register to do an * indirect jump). * * Syscall protocol: * Syscall number in r12, args in r6-r9 * Return value in r10 */G_ENTRY(trap): SAVE_STATE (TRAP, r12, ENTRY_SP) // Save registers. stsr SR_ECR, r19 // Find out which trap it was. ei // Enable interrupts. mov hilo(ret_from_trap), lp // where the trap should return // The following two shifts (1) clear out extraneous NMI data in the // upper 16-bits, (2) convert the 0x40 - 0x5f range of trap ECR // numbers into the (0-31) << 2 range we want, (3) set the flags. shl 27, r19 // chop off all high bits shr 25, r19 // scale back down and then << 2 bnz 2f // See if not trap 0. // Trap 0 is a `short' system call, skip general trap table. MAKE_SYS_CALL // Jump to the syscall function.2: // For other traps, use a table lookup. mov hilo(CSYM(trap_table)), r18 add r19, r18 ld.w 0[r18], r18 jmp [r18] // Jump to the trap handler.END(trap)/* This is just like ret_from_trap, but first restores extra registers saved by some wrappers. */L_ENTRY(restore_extra_regs_and_ret_from_trap): RESTORE_EXTRA_STATE(TRAP) // fall throughEND(restore_extra_regs_and_ret_from_trap)/* Entry point used to return from a syscall/trap. */L_ENTRY(ret_from_trap): RETURN(TRAP)END(ret_from_trap)/* This the initial entry point for a new child thread, with an appropriate stack in place that makes it look the the child is in the middle of an syscall. This function is actually `returned to' from switch_thread (copy_thread makes ret_from_fork the return address in each new thread's saved context). */C_ENTRY(ret_from_fork): mov r10, r6 // switch_thread returns the prev task. jarl CSYM(schedule_tail), lp // ...which is schedule_tail's arg mov r0, r10 // Child's fork call should return 0. br ret_from_trap // Do normal trap return.C_END(ret_from_fork)/* * Trap 1: `long' system calls * `Long' syscall protocol: * Syscall number in r12, args in r6-r9, r13-r14 * Return value in r10 */L_ENTRY(syscall_long): // Push extra arguments on the stack. Note that by default, the trap // handler reserves enough stack space for 6 arguments, so we don't // have to make any additional room. st.w r13, 16[sp] // arg 5 st.w r14, 20[sp] // arg 6 // Make sure r13 and r14 are preserved, in case we have to restart a // system call because of a signal (ep has already been set by caller). st.w r13, PTO+PT_GPR(13)[sp] st.w r14, PTO+PT_GPR(13)[sp] mov hilo(ret_from_long_syscall), lp MAKE_SYS_CALL // Jump to the syscall function.END(syscall_long)/* Entry point used to return from a long syscall. Only needed to restore r13/r14 if the general trap mechanism doesnt' do so. */L_ENTRY(ret_from_long_syscall): ld.w PTO+PT_GPR(13)[sp], r13 // Restore the extra registers ld.w PTO+PT_GPR(13)[sp], r14 br ret_from_trap // The rest is the same as other trapsEND(ret_from_long_syscall)/* These syscalls need access to the struct pt_regs on the stack, so we implement them in assembly (they're basically all wrappers anyway). */L_ENTRY(sys_fork_wrapper):#ifdef CONFIG_MMU addi SIGCHLD, r0, r6 // Arg 0: flags ld.w PTO+PT_GPR(GPR_SP)[sp], r7 // Arg 1: child SP (use parent's) movea PTO, sp, r8 // Arg 2: parent context mov r0, r9 // Arg 3/4/5: 0 st.w r0, 16[sp] st.w r0, 20[sp] mov hilo(CSYM(do_fork)), r18 // Where the real work gets done br save_extra_state_tramp // Save state and go there#else // fork almost works, enough to trick you into looking elsewhere :-( addi -EINVAL, r0, r10 jmp [lp]#endifEND(sys_fork_wrapper)L_ENTRY(sys_vfork_wrapper): addi CLONE_VFORK | CLONE_VM | SIGCHLD, r0, r6 // Arg 0: flags ld.w PTO+PT_GPR(GPR_SP)[sp], r7 // Arg 1: child SP (use parent's) movea PTO, sp, r8 // Arg 2: parent context mov r0, r9 // Arg 3/4/5: 0 st.w r0, 16[sp] st.w r0, 20[sp] mov hilo(CSYM(do_fork)), r18 // Where the real work gets done br save_extra_state_tramp // Save state and go thereEND(sys_vfork_wrapper)L_ENTRY(sys_clone_wrapper): ld.w PTO+PT_GPR(GPR_SP)[sp], r19// parent's stack pointer cmp r7, r0 // See if child SP arg (arg 1) is 0. cmov z, r19, r7, r7 // ... and use the parent's if so. movea PTO, sp, r8 // Arg 2: parent context mov r0, r9 // Arg 3/4/5: 0 st.w r0, 16[sp] st.w r0, 20[sp] mov hilo(CSYM(do_fork)), r18 // Where the real work gets done br save_extra_state_tramp // Save state and go thereEND(sys_clone_wrapper)L_ENTRY(sys_execve_wrapper): movea PTO, sp, r9 // add user context as 4th arg jr CSYM(sys_execve) // Do real work (tail-call).END(sys_execve_wrapper)L_ENTRY(sys_sigsuspend_wrapper): movea PTO, sp, r7 // add user context as 2nd arg mov hilo(CSYM(sys_sigsuspend)), r18 // syscall function jarl save_extra_state_tramp, lp // Save state and do it br restore_extra_regs_and_ret_from_trapEND(sys_sigsuspend_wrapper)L_ENTRY(sys_rt_sigsuspend_wrapper): movea PTO, sp, r8 // add user context as 3rd arg mov hilo(CSYM(sys_rt_sigsuspend)), r18 // syscall function jarl save_extra_state_tramp, lp // Save state and do it br restore_extra_regs_and_ret_from_trapEND(sys_rt_sigsuspend_wrapper)L_ENTRY(sys_sigreturn_wrapper): movea PTO, sp, r6 // add user context as 1st arg mov hilo(CSYM(sys_sigreturn)), r18 // syscall function jarl save_extra_state_tramp, lp // Save state and do it br restore_extra_regs_and_ret_from_trapEND(sys_sigreturn_wrapper)L_ENTRY(sys_rt_sigreturn_wrapper): movea PTO, sp, r6 // add user context as 1st arg mov hilo(CSYM(sys_rt_sigreturn)), r18// syscall function jarl save_extra_state_tramp, lp // Save state and do it br restore_extra_regs_and_ret_from_trapEND(sys_rt_sigreturn_wrapper)/* Save any state not saved by SAVE_STATE(TRAP), and jump to r18. It's main purpose is to share the rather lengthy code sequence that SAVE_STATE expands into among the above wrapper functions. */L_ENTRY(save_extra_state_tramp): SAVE_EXTRA_STATE(TRAP) // Save state not saved by entry. jmp [r18] // Do the work the caller wantsEND(save_extra_state_tramp)/* * Hardware maskable interrupts. * * The stack-pointer (r3) should have already been saved to the memory * location ENTRY_SP (the reason for this is that the interrupt vectors may be * beyond a 22-bit signed offset jump from the actual interrupt handler, and * this allows them to save the stack-pointer and use that register to do an * indirect jump). */G_ENTRY(irq): SAVE_STATE (IRQ, r0, ENTRY_SP) // Save registers. stsr SR_ECR, r6 // Find out which interrupt it was. movea PTO, sp, r7 // User regs are arg2 // All v850 implementations I know about encode their interrupts as // multiples of 0x10, starting at 0x80 (after NMIs and software // interrupts). Convert this number into a simple IRQ index for the // rest of the kernel. We also clear the upper 16 bits, which hold // NMI info, and don't appear to be cleared when a NMI returns. shl 16, r6 // clear upper 16 bits shr 20, r6 // shift back, and remove lower nibble add -8, r6 // remove bias for irqs // Call the high-level interrupt handling code. jarl CSYM(handle_irq), lp RETURN(IRQ)END(irq)/* * Debug trap / illegal-instruction exception * * The stack-pointer (r3) should have already been saved to the memory * location ENTRY_SP (the reason for this is that the interrupt vectors may be * beyond a 22-bit signed offset jump from the actual interrupt handler, and * this allows them to save the stack-pointer and use that register to do an * indirect jump). */G_ENTRY(dbtrap): SAVE_STATE (DBTRAP, r0, ENTRY_SP)// Save registers. /* First see if we came from kernel mode; if so, the dbtrap instruction has a special meaning, to set the DIR (`debug information register') register. This is because the DIR register can _only_ be manipulated/read while in `debug mode,' and debug mode is only active while we're inside the dbtrap handler. The exact functionality is: { DIR = (DIR | r6) & ~r7; return DIR; }. */ ld.b PTO+PT_KERNEL_MODE[sp], r19 cmp r19, r0 bz 1f stsr SR_DIR, r10 or r6, r10 not r7, r7 and r7, r10 ldsr r10, SR_DIR stsr SR_DIR, r10 // Confirm the value we set st.w r10, PTO+PT_GPR(10)[sp] // return it br 3f1: ei // Enable interrupts. /* The default signal type we raise. */ mov SIGTRAP, r6 /* See if it's a single-step trap. */ stsr SR_DBPSW, r19 andi 0x0800, r19, r19 bnz 2f /* Look to see if the preceding instruction was is a dbtrap or not, to decide which signal we should use. */ stsr SR_DBPC, r19 // PC following trapping insn ld.hu -2[r19], r19 ori 0xf840, r0, r20 // DBTRAP insn cmp r19, r20 // Was this trap caused by DBTRAP? cmov ne, SIGILL, r6, r6 // Choose signal appropriately /* Raise the desired signal. */2: mov CURRENT_TASK, r7 // Arg 1: task jarl CSYM(send_sig), lp // tail call3: RETURN(DBTRAP)END(dbtrap)/* * Hardware non-maskable interrupts. * * The stack-pointer (r3) should have already been saved to the memory * location ENTRY_SP (the reason for this is that the interrupt vectors may be * beyond a 22-bit signed offset jump from the actual interrupt handler, and
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -