⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ip27-irq.c

📁 LINUX 2.6.17.4的源码
💻 C
字号:
/* * ip27-irq.c: Highlevel interrupt handling for IP27 architecture. * * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org) * Copyright (C) 1999, 2000 Silicon Graphics, Inc. * Copyright (C) 1999 - 2001 Kanoj Sarcar */#undef DEBUG#include <linux/config.h>#include <linux/init.h>#include <linux/irq.h>#include <linux/errno.h>#include <linux/signal.h>#include <linux/sched.h>#include <linux/types.h>#include <linux/interrupt.h>#include <linux/ioport.h>#include <linux/timex.h>#include <linux/slab.h>#include <linux/random.h>#include <linux/smp_lock.h>#include <linux/kernel.h>#include <linux/kernel_stat.h>#include <linux/delay.h>#include <linux/bitops.h>#include <asm/bootinfo.h>#include <asm/io.h>#include <asm/mipsregs.h>#include <asm/system.h>#include <asm/ptrace.h>#include <asm/processor.h>#include <asm/pci/bridge.h>#include <asm/sn/addrs.h>#include <asm/sn/agent.h>#include <asm/sn/arch.h>#include <asm/sn/hub.h>#include <asm/sn/intr.h>/* * Linux has a controller-independent x86 interrupt architecture. * every controller has a 'controller-template', that is used * by the main code to do the right thing. Each driver-visible * interrupt source is transparently wired to the apropriate * controller. Thus drivers need not be aware of the * interrupt-controller. * * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC, * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC. * (IO-APICs assumed to be messaging to Pentium local-APICs) * * the code is designed to be easily extended with new/different * interrupt controllers, without having to do assembly magic. */extern asmlinkage void ip27_irq(void);extern struct bridge_controller *irq_to_bridge[];extern int irq_to_slot[];/* * use these macros to get the encoded nasid and widget id * from the irq value */#define IRQ_TO_BRIDGE(i)		irq_to_bridge[(i)]#define	SLOT_FROM_PCI_IRQ(i)		irq_to_slot[i]static inline int alloc_level(int cpu, int irq){	struct hub_data *hub = hub_data(cpu_to_node(cpu));	struct slice_data *si = cpu_data[cpu].data;	int level;	level = find_first_zero_bit(hub->irq_alloc_mask, LEVELS_PER_SLICE);	if (level >= LEVELS_PER_SLICE)		panic("Cpu %d flooded with devices\n", cpu);	__set_bit(level, hub->irq_alloc_mask);	si->level_to_irq[level] = irq;	return level;}static inline int find_level(cpuid_t *cpunum, int irq){	int cpu, i;	for_each_online_cpu(cpu) {		struct slice_data *si = cpu_data[cpu].data;		for (i = BASE_PCI_IRQ; i < LEVELS_PER_SLICE; i++)			if (si->level_to_irq[i] == irq) {				*cpunum = cpu;				return i;			}	}	panic("Could not identify cpu/level for irq %d\n", irq);}/* * Find first bit set */static int ms1bit(unsigned long x){	int b = 0, s;	s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;	s =  8; if (x >>  8 == 0) s = 0; b += s; x >>= s;	s =  4; if (x >>  4 == 0) s = 0; b += s; x >>= s;	s =  2; if (x >>  2 == 0) s = 0; b += s; x >>= s;	s =  1; if (x >>  1 == 0) s = 0; b += s;	return b;}/* * This code is unnecessarily complex, because we do SA_INTERRUPT * intr enabling. Basically, once we grab the set of intrs we need * to service, we must mask _all_ these interrupts; firstly, to make * sure the same intr does not intr again, causing recursion that * can lead to stack overflow. Secondly, we can not just mask the * one intr we are do_IRQing, because the non-masked intrs in the * first set might intr again, causing multiple servicings of the * same intr. This effect is mostly seen for intercpu intrs. * Kanoj 05.13.00 */static void ip27_do_irq_mask0(struct pt_regs *regs){	int irq, swlevel;	hubreg_t pend0, mask0;	cpuid_t cpu = smp_processor_id();	int pi_int_mask0 =		(cputoslice(cpu) == 0) ?  PI_INT_MASK0_A : PI_INT_MASK0_B;	/* copied from Irix intpend0() */	pend0 = LOCAL_HUB_L(PI_INT_PEND0);	mask0 = LOCAL_HUB_L(pi_int_mask0);	pend0 &= mask0;		/* Pick intrs we should look at */	if (!pend0)		return;	swlevel = ms1bit(pend0);#ifdef CONFIG_SMP	if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {		LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);	} else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {		LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);	} else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {		LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);		smp_call_function_interrupt();	} else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {		LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);		smp_call_function_interrupt();	} else#endif	{		/* "map" swlevel to irq */		struct slice_data *si = cpu_data[cpu].data;		irq = si->level_to_irq[swlevel];		do_IRQ(irq, regs);	}	LOCAL_HUB_L(PI_INT_PEND0);}static void ip27_do_irq_mask1(struct pt_regs *regs){	int irq, swlevel;	hubreg_t pend1, mask1;	cpuid_t cpu = smp_processor_id();	int pi_int_mask1 = (cputoslice(cpu) == 0) ?  PI_INT_MASK1_A : PI_INT_MASK1_B;	struct slice_data *si = cpu_data[cpu].data;	/* copied from Irix intpend0() */	pend1 = LOCAL_HUB_L(PI_INT_PEND1);	mask1 = LOCAL_HUB_L(pi_int_mask1);	pend1 &= mask1;		/* Pick intrs we should look at */	if (!pend1)		return;	swlevel = ms1bit(pend1);	/* "map" swlevel to irq */	irq = si->level_to_irq[swlevel];	LOCAL_HUB_CLR_INTR(swlevel);	do_IRQ(irq, regs);	LOCAL_HUB_L(PI_INT_PEND1);}static void ip27_prof_timer(struct pt_regs *regs){	panic("CPU %d got a profiling interrupt", smp_processor_id());}static void ip27_hub_error(struct pt_regs *regs){	panic("CPU %d got a hub error interrupt", smp_processor_id());}static int intr_connect_level(int cpu, int bit){	nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));	struct slice_data *si = cpu_data[cpu].data;	unsigned long flags;	set_bit(bit, si->irq_enable_mask);	local_irq_save(flags);	if (!cputoslice(cpu)) {		REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);		REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);	} else {		REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);		REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);	}	local_irq_restore(flags);	return 0;}static int intr_disconnect_level(int cpu, int bit){	nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));	struct slice_data *si = cpu_data[cpu].data;	clear_bit(bit, si->irq_enable_mask);	if (!cputoslice(cpu)) {		REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);		REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);	} else {		REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);		REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);	}	return 0;}/* Startup one of the (PCI ...) IRQs routes over a bridge.  */static unsigned int startup_bridge_irq(unsigned int irq){	struct bridge_controller *bc;	bridgereg_t device;	bridge_t *bridge;	int pin, swlevel;	cpuid_t cpu;	pin = SLOT_FROM_PCI_IRQ(irq);	bc = IRQ_TO_BRIDGE(irq);	bridge = bc->base;	pr_debug("bridge_startup(): irq= 0x%x  pin=%d\n", irq, pin);	/*	 * "map" irq to a swlevel greater than 6 since the first 6 bits	 * of INT_PEND0 are taken	 */	swlevel = find_level(&cpu, irq);	bridge->b_int_addr[pin].addr = (0x20000 | swlevel | (bc->nasid << 8));	bridge->b_int_enable |= (1 << pin);	bridge->b_int_enable |= 0x7ffffe00;	/* more stuff in int_enable */	/*	 * Enable sending of an interrupt clear packt to the hub on a high to	 * low transition of the interrupt pin.	 *	 * IRIX sets additional bits in the address which are documented as	 * reserved in the bridge docs.	 */	bridge->b_int_mode |= (1UL << pin);	/*	 * We assume the bridge to have a 1:1 mapping between devices	 * (slots) and intr pins.	 */	device = bridge->b_int_device;	device &= ~(7 << (pin*3));	device |= (pin << (pin*3));	bridge->b_int_device = device;        bridge->b_wid_tflush;        return 0;       /* Never anything pending.  */}/* Shutdown one of the (PCI ...) IRQs routes over a bridge.  */static void shutdown_bridge_irq(unsigned int irq){	struct bridge_controller *bc = IRQ_TO_BRIDGE(irq);	struct hub_data *hub = hub_data(cpu_to_node(bc->irq_cpu));	bridge_t *bridge = bc->base;	struct slice_data *si = cpu_data[bc->irq_cpu].data;	int pin, swlevel;	cpuid_t cpu;	pr_debug("bridge_shutdown: irq 0x%x\n", irq);	pin = SLOT_FROM_PCI_IRQ(irq);	/*	 * map irq to a swlevel greater than 6 since the first 6 bits	 * of INT_PEND0 are taken	 */	swlevel = find_level(&cpu, irq);	intr_disconnect_level(cpu, swlevel);	__clear_bit(swlevel, hub->irq_alloc_mask);	si->level_to_irq[swlevel] = -1;	bridge->b_int_enable &= ~(1 << pin);	bridge->b_wid_tflush;}static inline void enable_bridge_irq(unsigned int irq){	cpuid_t cpu;	int swlevel;	swlevel = find_level(&cpu, irq);	/* Criminal offence */	intr_connect_level(cpu, swlevel);}static inline void disable_bridge_irq(unsigned int irq){	cpuid_t cpu;	int swlevel;	swlevel = find_level(&cpu, irq);	/* Criminal offence */	intr_disconnect_level(cpu, swlevel);}static void mask_and_ack_bridge_irq(unsigned int irq){	disable_bridge_irq(irq);}static void end_bridge_irq(unsigned int irq){	if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)) &&	    irq_desc[irq].action)		enable_bridge_irq(irq);}static struct hw_interrupt_type bridge_irq_type = {	.typename	= "bridge",	.startup	= startup_bridge_irq,	.shutdown	= shutdown_bridge_irq,	.enable		= enable_bridge_irq,	.disable	= disable_bridge_irq,	.ack		= mask_and_ack_bridge_irq,	.end		= end_bridge_irq,};static unsigned long irq_map[NR_IRQS / BITS_PER_LONG];static int allocate_irqno(void){	int irq;again:	irq = find_first_zero_bit(irq_map, NR_IRQS);	if (irq >= NR_IRQS)		return -ENOSPC;	if (test_and_set_bit(irq, irq_map))		goto again;	return irq;}void free_irqno(unsigned int irq){	clear_bit(irq, irq_map);}void __devinit register_bridge_irq(unsigned int irq){	irq_desc[irq].status	= IRQ_DISABLED;	irq_desc[irq].action	= 0;	irq_desc[irq].depth	= 1;	irq_desc[irq].handler	= &bridge_irq_type;}int __devinit request_bridge_irq(struct bridge_controller *bc){	int irq = allocate_irqno();	int swlevel, cpu;	nasid_t nasid;	if (irq < 0)		return irq;	/*	 * "map" irq to a swlevel greater than 6 since the first 6 bits	 * of INT_PEND0 are taken	 */	cpu = bc->irq_cpu;	swlevel = alloc_level(cpu, irq);	if (unlikely(swlevel < 0)) {		free_irqno(irq);		return -EAGAIN;	}	/* Make sure it's not already pending when we connect it. */	nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));	REMOTE_HUB_CLR_INTR(nasid, swlevel);	intr_connect_level(cpu, swlevel);	register_bridge_irq(irq);	return irq;}extern void ip27_rt_timer_interrupt(struct pt_regs *regs);asmlinkage void plat_irq_dispatch(struct pt_regs *regs){	unsigned long pending = read_c0_cause() & read_c0_status();	if (pending & CAUSEF_IP4)		ip27_rt_timer_interrupt(regs);	else if (pending & CAUSEF_IP2)	/* PI_INT_PEND_0 or CC_PEND_{A|B} */		ip27_do_irq_mask0(regs);	else if (pending & CAUSEF_IP3)	/* PI_INT_PEND_1 */		ip27_do_irq_mask1(regs);	else if (pending & CAUSEF_IP5)		ip27_prof_timer(regs);	else if (pending & CAUSEF_IP6)		ip27_hub_error(regs);}void __init arch_init_irq(void){}void install_ipi(void){	int slice = LOCAL_HUB_L(PI_CPU_NUM);	int cpu = smp_processor_id();	struct slice_data *si = cpu_data[cpu].data;	struct hub_data *hub = hub_data(cpu_to_node(cpu));	int resched, call;	resched = CPU_RESCHED_A_IRQ + slice;	__set_bit(resched, hub->irq_alloc_mask);	__set_bit(resched, si->irq_enable_mask);	LOCAL_HUB_CLR_INTR(resched);	call = CPU_CALL_A_IRQ + slice;	__set_bit(call, hub->irq_alloc_mask);	__set_bit(call, si->irq_enable_mask);	LOCAL_HUB_CLR_INTR(call);	if (slice == 0) {		LOCAL_HUB_S(PI_INT_MASK0_A, si->irq_enable_mask[0]);		LOCAL_HUB_S(PI_INT_MASK1_A, si->irq_enable_mask[1]);	} else {		LOCAL_HUB_S(PI_INT_MASK0_B, si->irq_enable_mask[0]);		LOCAL_HUB_S(PI_INT_MASK1_B, si->irq_enable_mask[1]);	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -