📄 cp1emu.c
字号:
/* * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator * * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. * http://www.algor.co.uk * * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com * Copyright (C) 2000 MIPS Technologies, Inc. * * This program is free software; you can distribute it and/or modify it * under the terms of the GNU General Public License (Version 2) as * published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. * * A complete emulator for MIPS coprocessor 1 instructions. This is * required for #float(switch) or #float(trap), where it catches all * COP1 instructions via the "CoProcessor Unusable" exception. * * More surprisingly it is also required for #float(ieee), to help out * the hardware fpu at the boundaries of the IEEE-754 representation * (denormalised values, infinities, underflow, etc). It is made * quite nasty because emulation of some non-COP1 instructions is * required, e.g. in branch delay slots. * * Note if you know that you won't have an fpu, then you'll get much * better performance by compiling with -msoft-float! */#include <linux/sched.h>#include <asm/inst.h>#include <asm/bootinfo.h>#include <asm/cpu.h>#include <asm/cpu-features.h>#include <asm/processor.h>#include <asm/ptrace.h>#include <asm/signal.h>#include <asm/mipsregs.h>#include <asm/fpu_emulator.h>#include <asm/uaccess.h>#include <asm/branch.h>#include "ieee754.h"#include "dsemul.h"/* Strap kernel emulator for full MIPS IV emulation */#ifdef __mips#undef __mips#endif#define __mips 4/* Function which emulates a floating point instruction. */static int fpu_emu(struct pt_regs *, struct mips_fpu_soft_struct *, mips_instruction);#if __mips >= 4 && __mips != 32static int fpux_emu(struct pt_regs *, struct mips_fpu_soft_struct *, mips_instruction);#endif/* Further private data for which no space exists in mips_fpu_soft_struct */struct mips_fpu_emulator_stats fpuemustats;/* Control registers */#define FPCREG_RID 0 /* $0 = revision id */#define FPCREG_CSR 31 /* $31 = csr *//* Convert Mips rounding mode (0..3) to IEEE library modes. */static const unsigned char ieee_rm[4] = { [FPU_CSR_RN] = IEEE754_RN, [FPU_CSR_RZ] = IEEE754_RZ, [FPU_CSR_RU] = IEEE754_RU, [FPU_CSR_RD] = IEEE754_RD,};/* Convert IEEE library modes to Mips rounding mode (0..3). */static const unsigned char mips_rm[4] = { [IEEE754_RN] = FPU_CSR_RN, [IEEE754_RZ] = FPU_CSR_RZ, [IEEE754_RD] = FPU_CSR_RD, [IEEE754_RU] = FPU_CSR_RU,};#if __mips >= 4/* convert condition code register number to csr bit */static const unsigned int fpucondbit[8] = { FPU_CSR_COND0, FPU_CSR_COND1, FPU_CSR_COND2, FPU_CSR_COND3, FPU_CSR_COND4, FPU_CSR_COND5, FPU_CSR_COND6, FPU_CSR_COND7};#endif/* * Redundant with logic already in kernel/branch.c, * embedded in compute_return_epc. At some point, * a single subroutine should be used across both * modules. */static int isBranchInstr(mips_instruction * i){ switch (MIPSInst_OPCODE(*i)) { case spec_op: switch (MIPSInst_FUNC(*i)) { case jalr_op: case jr_op: return 1; } break; case bcond_op: switch (MIPSInst_RT(*i)) { case bltz_op: case bgez_op: case bltzl_op: case bgezl_op: case bltzal_op: case bgezal_op: case bltzall_op: case bgezall_op: return 1; } break; case j_op: case jal_op: case jalx_op: case beq_op: case bne_op: case blez_op: case bgtz_op: case beql_op: case bnel_op: case blezl_op: case bgtzl_op: return 1; case cop0_op: case cop1_op: case cop2_op: case cop1x_op: if (MIPSInst_RS(*i) == bc_op) return 1; break; } return 0;}/* * In the Linux kernel, we support selection of FPR format on the * basis of the Status.FR bit. This does imply that, if a full 32 * FPRs are desired, there needs to be a flip-flop that can be written * to one at that bit position. In any case, O32 MIPS ABI uses * only the even FPRs (Status.FR = 0). */#define CP0_STATUS_FR_SUPPORT#ifdef CP0_STATUS_FR_SUPPORT#define FR_BIT ST0_FR#else#define FR_BIT 0#endif#define SIFROMREG(si,x) ((si) = \ (xcp->cp0_status & FR_BIT) || !(x & 1) ? \ (int)ctx->fpr[x] : \ (int)(ctx->fpr[x & ~1] >> 32 ))#define SITOREG(si,x) (ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] = \ (xcp->cp0_status & FR_BIT) || !(x & 1) ? \ ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \ ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)#define DIFROMREG(di,x) ((di) = \ ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)])#define DITOREG(di,x) (ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] \ = (di))#define SPFROMREG(sp,x) SIFROMREG((sp).bits,x)#define SPTOREG(sp,x) SITOREG((sp).bits,x)#define DPFROMREG(dp,x) DIFROMREG((dp).bits,x)#define DPTOREG(dp,x) DITOREG((dp).bits,x)/* * Emulate the single floating point instruction pointed at by EPC. * Two instructions if the instruction is in a branch delay slot. */static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_soft_struct *ctx){ mips_instruction ir; void * emulpc, *contpc; unsigned int cond; if (get_user(ir, (mips_instruction __user *) xcp->cp0_epc)) { fpuemustats.errors++; return SIGBUS; } /* XXX NEC Vr54xx bug workaround */ if ((xcp->cp0_cause & CAUSEF_BD) && !isBranchInstr(&ir)) xcp->cp0_cause &= ~CAUSEF_BD; if (xcp->cp0_cause & CAUSEF_BD) { /* * The instruction to be emulated is in a branch delay slot * which means that we have to emulate the branch instruction * BEFORE we do the cop1 instruction. * * This branch could be a COP1 branch, but in that case we * would have had a trap for that instruction, and would not * come through this route. * * Linux MIPS branch emulator operates on context, updating the * cp0_epc. */ emulpc = (void *) (xcp->cp0_epc + 4); /* Snapshot emulation target */ if (__compute_return_epc(xcp)) {#ifdef CP1DBG printk("failed to emulate branch at %p\n", (void *) (xcp->cp0_epc));#endif return SIGILL; } if (get_user(ir, (mips_instruction __user *) emulpc)) { fpuemustats.errors++; return SIGBUS; } /* __compute_return_epc() will have updated cp0_epc */ contpc = (void *) xcp->cp0_epc; /* In order not to confuse ptrace() et al, tweak context */ xcp->cp0_epc = (unsigned long) emulpc - 4; } else { emulpc = (void *) xcp->cp0_epc; contpc = (void *) (xcp->cp0_epc + 4); } emul: fpuemustats.emulated++; switch (MIPSInst_OPCODE(ir)) { case ldc1_op:{ u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] + MIPSInst_SIMM(ir)); u64 val; fpuemustats.loads++; if (get_user(val, va)) { fpuemustats.errors++; return SIGBUS; } DITOREG(val, MIPSInst_RT(ir)); break; } case sdc1_op:{ u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] + MIPSInst_SIMM(ir)); u64 val; fpuemustats.stores++; DIFROMREG(val, MIPSInst_RT(ir)); if (put_user(val, va)) { fpuemustats.errors++; return SIGBUS; } break; } case lwc1_op:{ u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] + MIPSInst_SIMM(ir)); u32 val; fpuemustats.loads++; if (get_user(val, va)) { fpuemustats.errors++; return SIGBUS; } SITOREG(val, MIPSInst_RT(ir)); break; } case swc1_op:{ u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] + MIPSInst_SIMM(ir)); u32 val; fpuemustats.stores++; SIFROMREG(val, MIPSInst_RT(ir)); if (put_user(val, va)) { fpuemustats.errors++; return SIGBUS; } break; } case cop1_op: switch (MIPSInst_RS(ir)) {#if defined(__mips64) case dmfc_op: /* copregister fs -> gpr[rt] */ if (MIPSInst_RT(ir) != 0) { DIFROMREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir)); } break; case dmtc_op: /* copregister fs <- rt */ DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir)); break;#endif case mfc_op: /* copregister rd -> gpr[rt] */ if (MIPSInst_RT(ir) != 0) { SIFROMREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir)); } break; case mtc_op: /* copregister rd <- rt */ SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir)); break; case cfc_op:{ /* cop control register rd -> gpr[rt] */ u32 value; if (ir == CP1UNDEF) { return do_dsemulret(xcp); } if (MIPSInst_RD(ir) == FPCREG_CSR) { value = ctx->fcr31; value = (value & ~0x3) | mips_rm[value & 0x3];#ifdef CSRTRACE printk("%p gpr[%d]<-csr=%08x\n", (void *) (xcp->cp0_epc), MIPSInst_RT(ir), value);#endif } else if (MIPSInst_RD(ir) == FPCREG_RID) value = 0; else value = 0; if (MIPSInst_RT(ir)) xcp->regs[MIPSInst_RT(ir)] = value; break; } case ctc_op:{ /* copregister rd <- rt */ u32 value; if (MIPSInst_RT(ir) == 0) value = 0; else value = xcp->regs[MIPSInst_RT(ir)]; /* we only have one writable control reg */ if (MIPSInst_RD(ir) == FPCREG_CSR) {#ifdef CSRTRACE printk("%p gpr[%d]->csr=%08x\n", (void *) (xcp->cp0_epc), MIPSInst_RT(ir), value);#endif value &= (FPU_CSR_FLUSH | FPU_CSR_ALL_E | FPU_CSR_ALL_S | 0x03); ctx->fcr31 &= ~(FPU_CSR_FLUSH | FPU_CSR_ALL_E | FPU_CSR_ALL_S | 0x03); /* convert to ieee library modes */ ctx->fcr31 |= (value & ~0x3) | ieee_rm[value & 0x3]; } if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) { return SIGFPE; } break; } case bc_op:{ int likely = 0; if (xcp->cp0_cause & CAUSEF_BD) return SIGILL;#if __mips >= 4 cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];#else cond = ctx->fcr31 & FPU_CSR_COND;#endif switch (MIPSInst_RT(ir) & 3) { case bcfl_op: likely = 1; case bcf_op: cond = !cond; break; case bctl_op: likely = 1; case bct_op: break; default: /* thats an illegal instruction */ return SIGILL; } xcp->cp0_cause |= CAUSEF_BD; if (cond) { /* branch taken: emulate dslot * instruction */ xcp->cp0_epc += 4; contpc = (void *) (xcp->cp0_epc + (MIPSInst_SIMM(ir) << 2)); if (get_user(ir, (mips_instruction __user *) xcp->cp0_epc)) { fpuemustats.errors++; return SIGBUS; } switch (MIPSInst_OPCODE(ir)) { case lwc1_op: case swc1_op:#if (__mips >= 2 || defined(__mips64)) case ldc1_op: case sdc1_op:#endif case cop1_op:#if __mips >= 4 && __mips != 32 case cop1x_op:#endif /* its one of ours */ goto emul;#if __mips >= 4 case spec_op: if (MIPSInst_FUNC(ir) == movc_op) goto emul; break;#endif } /* * Single step the non-cp1 * instruction in the dslot */ return mips_dsemul(xcp, ir, (unsigned long) contpc); } else { /* branch not taken */ if (likely) { /* * branch likely nullifies * dslot if not taken */ xcp->cp0_epc += 4; contpc += 4; /* * else continue & execute * dslot as normal insn */ } } break; } default: if (!(MIPSInst_RS(ir) & 0x10)) return SIGILL; { int sig; /* a real fpu computation instruction */ if ((sig = fpu_emu(xcp, ctx, ir))) return sig; } } break;#if __mips >= 4 && __mips != 32 case cop1x_op:{ int sig; if ((sig = fpux_emu(xcp, ctx, ir))) return sig; break; }#endif#if __mips >= 4 case spec_op: if (MIPSInst_FUNC(ir) != movc_op) return SIGILL; cond = fpucondbit[MIPSInst_RT(ir) >> 2]; if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0)) xcp->regs[MIPSInst_RD(ir)] = xcp->regs[MIPSInst_RS(ir)]; break;#endif default: return SIGILL; } /* we did it !! */ xcp->cp0_epc = (unsigned long) contpc; xcp->cp0_cause &= ~CAUSEF_BD; return 0;}/* * Conversion table from MIPS compare ops 48-63 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig); */static const unsigned char cmptab[8] = { 0, /* cmp_0 (sig) cmp_sf */ IEEE754_CUN, /* cmp_un (sig) cmp_ngle */ IEEE754_CEQ, /* cmp_eq (sig) cmp_seq */ IEEE754_CEQ | IEEE754_CUN, /* cmp_ueq (sig) cmp_ngl */ IEEE754_CLT, /* cmp_olt (sig) cmp_lt */ IEEE754_CLT | IEEE754_CUN, /* cmp_ult (sig) cmp_nge */ IEEE754_CLT | IEEE754_CEQ, /* cmp_ole (sig) cmp_le */ IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN, /* cmp_ule (sig) cmp_ngt */};#if __mips >= 4 && __mips != 32/* * Additional MIPS4 instructions */#define DEF3OP(name, p, f1, f2, f3) \static ieee754##p fpemu_##p##_##name (ieee754##p r, ieee754##p s, \ ieee754##p t) \{ \ struct _ieee754_csr ieee754_csr_save; \ s = f1 (s, t); \ ieee754_csr_save = ieee754_csr; \ s = f2 (s, r); \ ieee754_csr_save.cx |= ieee754_csr.cx; \ ieee754_csr_save.sx |= ieee754_csr.sx; \ s = f3 (s); \ ieee754_csr.cx |= ieee754_csr_save.cx; \ ieee754_csr.sx |= ieee754_csr_save.sx; \ return s; \}static ieee754dp fpemu_dp_recip(ieee754dp d){ return ieee754dp_div(ieee754dp_one(0), d);}static ieee754dp fpemu_dp_rsqrt(ieee754dp d){ return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));}static ieee754sp fpemu_sp_recip(ieee754sp s){ return ieee754sp_div(ieee754sp_one(0), s);}static ieee754sp fpemu_sp_rsqrt(ieee754sp s){ return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));}DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add,);DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub,);DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add,);DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub,);DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_soft_struct *ctx, mips_instruction ir){ unsigned rcsr = 0; /* resulting csr */ fpuemustats.cp1xops++; switch (MIPSInst_FMA_FFMT(ir)) { case s_fmt:{ /* 0 */ ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp); ieee754sp fd, fr, fs, ft; u32 __user *va; u32 val; switch (MIPSInst_FUNC(ir)) { case lwxc1_op: va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] + xcp->regs[MIPSInst_FT(ir)]); fpuemustats.loads++; if (get_user(val, va)) { fpuemustats.errors++; return SIGBUS; } SITOREG(val, MIPSInst_FD(ir)); break; case swxc1_op: va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] + xcp->regs[MIPSInst_FT(ir)]); fpuemustats.stores++; SIFROMREG(val, MIPSInst_FS(ir)); if (put_user(val, va)) { fpuemustats.errors++; return SIGBUS; } break; case madd_s_op: handler = fpemu_sp_madd; goto scoptop;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -