📄 time.c
字号:
return res;}/* last time when xtime and rtc are sync'ed up */static long last_rtc_update;/* * local_timer_interrupt() does profiling and process accounting * on a per-CPU basis. * * In UP mode, it is invoked from the (global) timer_interrupt. * * In SMP mode, it might invoked by per-CPU timer interrupt, or * a broadcasted inter-processor interrupt which itself is triggered * by the global timer interrupt. */void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs){ if (current->pid) profile_tick(CPU_PROFILING, regs); update_process_times(user_mode(regs));}/* * High-level timer interrupt service routines. This function * is set as irqaction->handler and is invoked through do_IRQ. */irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs){ unsigned long j; unsigned int count; write_seqlock(&xtime_lock); count = mips_hpt_read(); mips_timer_ack(); /* Update timerhi/timerlo for intra-jiffy calibration. */ timerhi += count < timerlo; /* Wrap around */ timerlo = count; /* * call the generic timer interrupt handling */ do_timer(regs); /* * If we have an externally synchronized Linux clock, then update * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be * called as close as possible to 500 ms before the new second starts. */ if (ntp_synced() && xtime.tv_sec > last_rtc_update + 660 && (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { if (rtc_mips_set_mmss(xtime.tv_sec) == 0) { last_rtc_update = xtime.tv_sec; } else { /* do it again in 60 s */ last_rtc_update = xtime.tv_sec - 600; } } /* * If jiffies has overflown in this timer_interrupt, we must * update the timer[hi]/[lo] to make fast gettimeoffset funcs * quotient calc still valid. -arca * * The first timer interrupt comes late as interrupts are * enabled long after timers are initialized. Therefore the * high precision timer is fast, leading to wrong gettimeoffset() * calculations. We deal with it by setting it based on the * number of its ticks between the second and the third interrupt. * That is still somewhat imprecise, but it's a good estimate. * --macro */ j = jiffies; if (j < 4) { static unsigned int prev_count; static int hpt_initialized; switch (j) { case 0: timerhi = timerlo = 0; mips_hpt_init(count); break; case 2: prev_count = count; break; case 3: if (!hpt_initialized) { unsigned int c3 = 3 * (count - prev_count); timerhi = 0; timerlo = c3; mips_hpt_init(count - c3); hpt_initialized = 1; } break; default: break; } } write_sequnlock(&xtime_lock); /* * In UP mode, we call local_timer_interrupt() to do profiling * and process accouting. * * In SMP mode, local_timer_interrupt() is invoked by appropriate * low-level local timer interrupt handler. */ local_timer_interrupt(irq, dev_id, regs); return IRQ_HANDLED;}int null_perf_irq(struct pt_regs *regs){ return 0;}int (*perf_irq)(struct pt_regs *regs) = null_perf_irq;EXPORT_SYMBOL(null_perf_irq);EXPORT_SYMBOL(perf_irq);asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs){ int r2 = cpu_has_mips_r2; irq_enter(); kstat_this_cpu.irqs[irq]++; /* * Suckage alert: * Before R2 of the architecture there was no way to see if a * performance counter interrupt was pending, so we have to run the * performance counter interrupt handler anyway. */ if (!r2 || (read_c0_cause() & (1 << 26))) if (perf_irq(regs)) goto out; /* we keep interrupt disabled all the time */ if (!r2 || (read_c0_cause() & (1 << 30))) timer_interrupt(irq, NULL, regs);out: irq_exit();}asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs){ irq_enter(); if (smp_processor_id() != 0) kstat_this_cpu.irqs[irq]++; /* we keep interrupt disabled all the time */ local_timer_interrupt(irq, NULL, regs); irq_exit();}/* * time_init() - it does the following things. * * 1) board_time_init() - * a) (optional) set up RTC routines, * b) (optional) calibrate and set the mips_hpt_frequency * (only needed if you intended to use fixed_rate_gettimeoffset * or use cpu counter as timer interrupt source) * 2) setup xtime based on rtc_mips_get_time(). * 3) choose a appropriate gettimeoffset routine. * 4) calculate a couple of cached variables for later usage * 5) board_timer_setup() - * a) (optional) over-write any choices made above by time_init(). * b) machine specific code should setup the timer irqaction. * c) enable the timer interrupt */void (*board_time_init)(void);void (*board_timer_setup)(struct irqaction *irq);unsigned int mips_hpt_frequency;static struct irqaction timer_irqaction = { .handler = timer_interrupt, .flags = SA_INTERRUPT, .name = "timer",};static unsigned int __init calibrate_hpt(void){ u64 frequency; u32 hpt_start, hpt_end, hpt_count, hz; const int loops = HZ / 10; int log_2_loops = 0; int i; /* * We want to calibrate for 0.1s, but to avoid a 64-bit * division we round the number of loops up to the nearest * power of 2. */ while (loops > 1 << log_2_loops) log_2_loops++; i = 1 << log_2_loops; /* * Wait for a rising edge of the timer interrupt. */ while (mips_timer_state()); while (!mips_timer_state()); /* * Now see how many high precision timer ticks happen * during the calculated number of periods between timer * interrupts. */ hpt_start = mips_hpt_read(); do { while (mips_timer_state()); while (!mips_timer_state()); } while (--i); hpt_end = mips_hpt_read(); hpt_count = hpt_end - hpt_start; hz = HZ; frequency = (u64)hpt_count * (u64)hz; return frequency >> log_2_loops;}void __init time_init(void){ if (board_time_init) board_time_init(); if (!rtc_mips_set_mmss) rtc_mips_set_mmss = rtc_mips_set_time; xtime.tv_sec = rtc_mips_get_time(); xtime.tv_nsec = 0; set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); /* Choose appropriate high precision timer routines. */ if (!cpu_has_counter && !mips_hpt_read) { /* No high precision timer -- sorry. */ mips_hpt_read = null_hpt_read; mips_hpt_init = null_hpt_init; } else if (!mips_hpt_frequency && !mips_timer_state) { /* A high precision timer of unknown frequency. */ if (!mips_hpt_read) { /* No external high precision timer -- use R4k. */ mips_hpt_read = c0_hpt_read; mips_hpt_init = c0_hpt_init; } if (cpu_has_mips32r1 || cpu_has_mips32r2 || (current_cpu_data.isa_level == MIPS_CPU_ISA_I) || (current_cpu_data.isa_level == MIPS_CPU_ISA_II)) /* * We need to calibrate the counter but we don't have * 64-bit division. */ do_gettimeoffset = calibrate_div32_gettimeoffset; else /* * We need to calibrate the counter but we *do* have * 64-bit division. */ do_gettimeoffset = calibrate_div64_gettimeoffset; } else { /* We know counter frequency. Or we can get it. */ if (!mips_hpt_read) { /* No external high precision timer -- use R4k. */ mips_hpt_read = c0_hpt_read; if (mips_timer_state) mips_hpt_init = c0_hpt_init; else { /* No external timer interrupt -- use R4k. */ mips_hpt_init = c0_hpt_timer_init; mips_timer_ack = c0_timer_ack; } } if (!mips_hpt_frequency) mips_hpt_frequency = calibrate_hpt(); do_gettimeoffset = fixed_rate_gettimeoffset; /* Calculate cache parameters. */ cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ; /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */ do_div64_32(sll32_usecs_per_cycle, 1000000, mips_hpt_frequency / 2, mips_hpt_frequency); /* Report the high precision timer rate for a reference. */ printk("Using %u.%03u MHz high precision timer.\n", ((mips_hpt_frequency + 500) / 1000) / 1000, ((mips_hpt_frequency + 500) / 1000) % 1000); } if (!mips_timer_ack) /* No timer interrupt ack (e.g. i8254). */ mips_timer_ack = null_timer_ack; /* This sets up the high precision timer for the first interrupt. */ mips_hpt_init(mips_hpt_read()); /* * Call board specific timer interrupt setup. * * this pointer must be setup in machine setup routine. * * Even if a machine chooses to use a low-level timer interrupt, * it still needs to setup the timer_irqaction. * In that case, it might be better to set timer_irqaction.handler * to be NULL function so that we are sure the high-level code * is not invoked accidentally. */ board_timer_setup(&timer_irqaction);}#define FEBRUARY 2#define STARTOFTIME 1970#define SECDAY 86400L#define SECYR (SECDAY * 365)#define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400))#define days_in_year(y) (leapyear(y) ? 366 : 365)#define days_in_month(m) (month_days[(m) - 1])static int month_days[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};void to_tm(unsigned long tim, struct rtc_time *tm){ long hms, day, gday; int i; gday = day = tim / SECDAY; hms = tim % SECDAY; /* Hours, minutes, seconds are easy */ tm->tm_hour = hms / 3600; tm->tm_min = (hms % 3600) / 60; tm->tm_sec = (hms % 3600) % 60; /* Number of years in days */ for (i = STARTOFTIME; day >= days_in_year(i); i++) day -= days_in_year(i); tm->tm_year = i; /* Number of months in days left */ if (leapyear(tm->tm_year)) days_in_month(FEBRUARY) = 29; for (i = 1; day >= days_in_month(i); i++) day -= days_in_month(i); days_in_month(FEBRUARY) = 28; tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */ /* Days are what is left over (+1) from all that. */ tm->tm_mday = day + 1; /* * Determine the day of week */ tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */}EXPORT_SYMBOL(rtc_lock);EXPORT_SYMBOL(to_tm);EXPORT_SYMBOL(rtc_mips_set_time);EXPORT_SYMBOL(rtc_mips_get_time);unsigned long long sched_clock(void){ return (unsigned long long)jiffies*(1000000000/HZ);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -