📄 dbdma.c
字号:
/* * * BRIEF MODULE DESCRIPTION * The Descriptor Based DMA channel manager that first appeared * on the Au1550. I started with dma.c, but I think all that is * left is this initial comment :-) * * Copyright 2004 Embedded Edge, LLC * dan@embeddededge.com * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. * */#include <linux/config.h>#include <linux/kernel.h>#include <linux/errno.h>#include <linux/sched.h>#include <linux/slab.h>#include <linux/spinlock.h>#include <linux/string.h>#include <linux/delay.h>#include <linux/interrupt.h>#include <linux/module.h>#include <asm/mach-au1x00/au1000.h>#include <asm/mach-au1x00/au1xxx_dbdma.h>#include <asm/system.h>#if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)/* * The Descriptor Based DMA supports up to 16 channels. * * There are 32 devices defined. We keep an internal structure * of devices using these channels, along with additional * information. * * We allocate the descriptors and allow access to them through various * functions. The drivers allocate the data buffers and assign them * to the descriptors. */static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);/* I couldn't find a macro that did this......*/#define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))static dbdma_global_t *dbdma_gptr = (dbdma_global_t *)DDMA_GLOBAL_BASE;static int dbdma_initialized=0;static void au1xxx_dbdma_init(void);static dbdev_tab_t dbdev_tab[] = {#ifdef CONFIG_SOC_AU1550 /* UARTS */ { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 }, { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 }, { DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 }, { DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 }, /* EXT DMA */ { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 }, /* USB DEV */ { DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 }, { DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 }, { DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 }, { DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 }, { DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 }, { DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 }, /* PSC 0 */ { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 }, { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 }, /* PSC 1 */ { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 }, { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 }, /* PSC 2 */ { DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 }, { DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 }, /* PSC 3 */ { DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 }, { DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 }, { DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */ { DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */ /* MAC 0 */ { DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, /* MAC 1 */ { DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },#endif /* CONFIG_SOC_AU1550 */#ifdef CONFIG_SOC_AU1200 { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 }, { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 }, { DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 }, { DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 }, { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 }, { DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 }, { DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 }, { DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 }, { DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 }, { DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 }, { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 }, { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 }, { DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 }, { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 }, { DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 }, { DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 }, { DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 }, { DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },#endif // CONFIG_SOC_AU1200 { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, /* Provide 16 user definable device types */ { 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0 },};#define DBDEV_TAB_SIZE (sizeof(dbdev_tab) / sizeof(dbdev_tab_t))static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];static dbdev_tab_t *find_dbdev_id (u32 id){ int i; dbdev_tab_t *p; for (i = 0; i < DBDEV_TAB_SIZE; ++i) { p = &dbdev_tab[i]; if (p->dev_id == id) return p; } return NULL;}void * au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp){ return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));}EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);u32au1xxx_ddma_add_device(dbdev_tab_t *dev){ u32 ret = 0; dbdev_tab_t *p=NULL; static u16 new_id=0x1000; p = find_dbdev_id(0); if ( NULL != p ) { memcpy(p, dev, sizeof(dbdev_tab_t)); p->dev_id = DSCR_DEV2CUSTOM_ID(new_id,dev->dev_id); ret = p->dev_id; new_id++;#if 0 printk("add_device: id:%x flags:%x padd:%x\n", p->dev_id, p->dev_flags, p->dev_physaddr );#endif } return ret;}EXPORT_SYMBOL(au1xxx_ddma_add_device);/* Allocate a channel and return a non-zero descriptor if successful.*/u32au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid, void (*callback)(int, void *, struct pt_regs *), void *callparam){ unsigned long flags; u32 used, chan, rv; u32 dcp; int i; dbdev_tab_t *stp, *dtp; chan_tab_t *ctp; au1x_dma_chan_t *cp; /* We do the intialization on the first channel allocation. * We have to wait because of the interrupt handler initialization * which can't be done successfully during board set up. */ if (!dbdma_initialized) au1xxx_dbdma_init(); dbdma_initialized = 1; if ((stp = find_dbdev_id(srcid)) == NULL) return 0; if ((dtp = find_dbdev_id(destid)) == NULL) return 0; used = 0; rv = 0; /* Check to see if we can get both channels. */ spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags); if (!(stp->dev_flags & DEV_FLAGS_INUSE) || (stp->dev_flags & DEV_FLAGS_ANYUSE)) { /* Got source */ stp->dev_flags |= DEV_FLAGS_INUSE; if (!(dtp->dev_flags & DEV_FLAGS_INUSE) || (dtp->dev_flags & DEV_FLAGS_ANYUSE)) { /* Got destination */ dtp->dev_flags |= DEV_FLAGS_INUSE; } else { /* Can't get dest. Release src. */ stp->dev_flags &= ~DEV_FLAGS_INUSE; used++; } } else { used++; } spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags); if (!used) { /* Let's see if we can allocate a channel for it. */ ctp = NULL; chan = 0; spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags); for (i=0; i<NUM_DBDMA_CHANS; i++) { if (chan_tab_ptr[i] == NULL) { /* If kmalloc fails, it is caught below same * as a channel not available. */ ctp = kmalloc(sizeof(chan_tab_t), GFP_KERNEL); chan_tab_ptr[i] = ctp; break; } } spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags); if (ctp != NULL) { memset(ctp, 0, sizeof(chan_tab_t)); ctp->chan_index = chan = i; dcp = DDMA_CHANNEL_BASE; dcp += (0x0100 * chan); ctp->chan_ptr = (au1x_dma_chan_t *)dcp; cp = (au1x_dma_chan_t *)dcp; ctp->chan_src = stp; ctp->chan_dest = dtp; ctp->chan_callback = callback; ctp->chan_callparam = callparam; /* Initialize channel configuration. */ i = 0; if (stp->dev_intlevel) i |= DDMA_CFG_SED; if (stp->dev_intpolarity) i |= DDMA_CFG_SP; if (dtp->dev_intlevel) i |= DDMA_CFG_DED; if (dtp->dev_intpolarity) i |= DDMA_CFG_DP; if ((stp->dev_flags & DEV_FLAGS_SYNC) || (dtp->dev_flags & DEV_FLAGS_SYNC)) i |= DDMA_CFG_SYNC; cp->ddma_cfg = i; au_sync(); /* Return a non-zero value that can be used to * find the channel information in subsequent * operations. */ rv = (u32)(&chan_tab_ptr[chan]); } else { /* Release devices */ stp->dev_flags &= ~DEV_FLAGS_INUSE; dtp->dev_flags &= ~DEV_FLAGS_INUSE; } } return rv;}EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);/* Set the device width if source or destination is a FIFO. * Should be 8, 16, or 32 bits. */u32au1xxx_dbdma_set_devwidth(u32 chanid, int bits){ u32 rv; chan_tab_t *ctp; dbdev_tab_t *stp, *dtp; ctp = *((chan_tab_t **)chanid); stp = ctp->chan_src; dtp = ctp->chan_dest; rv = 0; if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */ rv = stp->dev_devwidth; stp->dev_devwidth = bits; } if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */ rv = dtp->dev_devwidth; dtp->dev_devwidth = bits; } return rv;}EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);/* Allocate a descriptor ring, initializing as much as possible.*/u32au1xxx_dbdma_ring_alloc(u32 chanid, int entries){ int i; u32 desc_base, srcid, destid; u32 cmd0, cmd1, src1, dest1; u32 src0, dest0; chan_tab_t *ctp; dbdev_tab_t *stp, *dtp; au1x_ddma_desc_t *dp; /* I guess we could check this to be within the * range of the table...... */ ctp = *((chan_tab_t **)chanid); stp = ctp->chan_src; dtp = ctp->chan_dest; /* The descriptors must be 32-byte aligned. There is a * possibility the allocation will give us such an address, * and if we try that first we are likely to not waste larger * slabs of memory. */ desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t), GFP_KERNEL|GFP_DMA); if (desc_base == 0) return 0; if (desc_base & 0x1f) { /* Lost....do it again, allocate extra, and round * the address base. */ kfree((const void *)desc_base); i = entries * sizeof(au1x_ddma_desc_t); i += (sizeof(au1x_ddma_desc_t) - 1); if ((desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA)) == 0) return 0; desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t)); } dp = (au1x_ddma_desc_t *)desc_base; /* Keep track of the base descriptor. */ ctp->chan_desc_base = dp; /* Initialize the rings with as much information as we know. */ srcid = stp->dev_id; destid = dtp->dev_id; cmd0 = cmd1 = src1 = dest1 = 0; src0 = dest0 = 0; cmd0 |= DSCR_CMD0_SID(srcid); cmd0 |= DSCR_CMD0_DID(destid); cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV; cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE); /* is it mem to mem transfer? */ if(((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) || (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) && ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) || (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS))) { cmd0 |= DSCR_CMD0_MEM; } switch (stp->dev_devwidth) { case 8: cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE); break; case 16: cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD); break; case 32: default: cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD); break; } switch (dtp->dev_devwidth) { case 8: cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE); break; case 16: cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD); break; case 32: default: cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD); break; } /* If the device is marked as an in/out FIFO, ensure it is * set non-coherent. */ if (stp->dev_flags & DEV_FLAGS_IN) cmd0 |= DSCR_CMD0_SN; /* Source in fifo */ if (dtp->dev_flags & DEV_FLAGS_OUT) cmd0 |= DSCR_CMD0_DN; /* Destination out fifo */ /* Set up source1. For now, assume no stride and increment. * A channel attribute update can change this later. */ switch (stp->dev_tsize) { case 1: src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1); break; case 2: src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2); break; case 4: src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4); break; case 8: default: src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8); break; } /* If source input is fifo, set static address. */ if (stp->dev_flags & DEV_FLAGS_IN) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -