📄 nand.c
字号:
//====================================================================
// File Name : Nand.c
// Function : S3C2440 8-bit interface Nand Test program(this program use K9k2g16.c).
// Date : May xx, 2003
// Version : 0.0
// History
// R0.0 (200305xx): Modified for 2440 from 2410. -> DonGo
//====================================================================
/**************** K9s1208 NAND flash ********************/
// 1block=(512+16)bytes x 32pages
// 4096block
// Block: A[23:14], Page: [13:9]
/**************** K9K2G16 NAND flash *******************/
// 1block=(2048+64)bytes x 64pages
// 2048block
// Block: A[23:14], page: [13:9]
/*****************************************************/
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include "def.h"
#include "option.h"
#include "2440addr.h"
#include "2440lib.h"
#include "2440slib.h"
#include "Nand.h"
#define ECC_CHECK (1)
#define ASM 1
#define C_LANG 2
#define DMA 3
#define TRANS_MODE 2
//*************************************************
//*************************************************
//** H/W dependent functions **
//*************************************************
//*************************************************
//The code is made for bi-endian mode
// block0: reserved for boot strap
// block1~4095: used for OS image
// badblock SE: xx xx xx xx xx 00 ....
// good block SE: ECC0 ECC1 ECC2 FF FF FF ....
//============= spare area configuration ====================================
// 0 1 2 3 4 5 6 7 8 9 0xa ...
// Mecc0 Mecc1 Mecc2 FF FF Bad Block FF FF Secc0 Secc1 FF
//====================================================================
#define NF_MECC_UnLock() {rNFCONT&=~(1<<5);}
#define NF_MECC_Lock() {rNFCONT|=(1<<5);}
#define NF_SECC_UnLock() {rNFCONT&=~(1<<6);}
#define NF_SECC_Lock() {rNFCONT|=(1<<6);}
#define NF_CMD(cmd) {rNFCMD=cmd;}
#define NF_ADDR(addr) {rNFADDR=addr;}
#define NF_nFCE_L() {rNFCONT&=~(1<<1);}
#define NF_nFCE_H() {rNFCONT|=(1<<1);}
#define NF_RSTECC() {rNFCONT|=(1<<4);}
#define NF_RDDATA() (rNFDATA)
#define NF_RDDATA8() ((*(volatile unsigned char*)0x4E000010) )
#define NF_WRDATA(data) {rNFDATA=data;}
#define NF_WRDATA8(data) {rNFDATA8=data;}
// RnB Signal
#define NF_CLEAR_RB() {rNFSTAT |= (1<<2);} // Have write '1' to clear this bit.
#define NF_DETECT_RB() {while(!(rNFSTAT&(1<<2)));}
// HCLK=100Mhz
#define TACLS 7 // 1-clk(0ns)
#define TWRPH0 7 // 3-clk(25ns)
#define TWRPH1 7 // 1-clk(10ns) //TACLS+TWRPH0+TWRPH1>=50ns
static U8 se8Buf[16]={
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff
};
//*************************************************
int NF8_IsBadBlock(U32 block)
{
int i;
unsigned int blockPage;
U8 data;
blockPage=(block<<5); // For 2'nd cycle I/O[7:5]
NF_nFCE_L();
NF_CLEAR_RB();
NF_CMD(0x50); // Spare array read command
NF_ADDR((512+5)&0xf); // Read the mark of bad block in spare array(M addr=5), A4-A7:Don't care
NF_ADDR(blockPage&0xff); // The mark of bad block is in 0 page
NF_ADDR((blockPage>>8)&0xff); // For block number A[24:17]
NF_ADDR((blockPage>>16)&0xff); // For block number A[25]
NF_DETECT_RB(); // Wait tR(max 12us)
data=NF_RDDATA();
NF_nFCE_H();
if(data!=0xff)
{
//Uart_Printf("[block %d has been marked as a bad block(%x)]\n",block,data);
return FAIL;
}
else
{
return OK;
}
}
int NF8_MarkBadBlock(U32 block)
{
int i;
U32 blockPage=(block<<5);
se8Buf[0]=0xff;
se8Buf[1]=0xff;
se8Buf[2]=0xff;
se8Buf[5]=0x44; // Bad blcok mark=44
NF_nFCE_L();
NF_CMD(0x50); //????
NF_CMD(0x80); // Write 1st command
NF_ADDR(0x0); // The mark of bad block is
NF_ADDR(blockPage&0xff); // marked 5th spare array
NF_ADDR((blockPage>>8)&0xff); // in the 1st page.
NF_ADDR((blockPage>>16)&0xff); //
for(i=0;i<16;i++)
{
NF_WRDATA(se8Buf[i]); // Write spare array
}
NF_CLEAR_RB();
NF_CMD(0x10); // Write 2nd command
NF_DETECT_RB();
NF_CMD(0x70);
for(i=0;i<3;i++); //twhr=60ns////??????
if (NF_RDDATA()&0x1) // Spare arrray write error
{
NF_nFCE_H();
//Uart_Printf("[Program error is occurred but ignored]\n");
}
else
{
NF_nFCE_H();
}
//Uart_Printf("[block #%d is marked as a bad block]\n",block);
return OK;
}
int NF8_ReadPage(U32 block,U32 page,U8 *buffer)
{
int i;
unsigned int blockPage;
U32 Mecc, Secc;
U8 *bufPt=buffer;
U8 se[16], ecc0, ecc1, ecc2, ecc3,a,b,c,d,e;
blockPage=(block<<5)+page;
NF_RSTECC(); // Initialize ECC
NF_MECC_UnLock();
NF_nFCE_L();
NF_CLEAR_RB();
NF_CMD(0x00); // Read command
NF_ADDR(0); // Column = 0
NF_ADDR(blockPage&0xff); //
NF_ADDR((blockPage>>8)&0xff); // Block & Page num.
NF_ADDR((blockPage>>16)&0xff); //
NF_DETECT_RB();
#if TRANS_MODE==C_LANG
for(i=0;i<512;i++) {
*bufPt++=NF_RDDATA8(); // Read one page
}
#elif TRANS_MODE==DMA
// Nand to memory dma setting
rSRCPND=BIT_DMA0; // Init DMA src pending.
rDISRC0=NFDATA; // Nand flash data register
rDISRCC0=(0<<1) | (1<<0); //arc=AHB,src_addr=fix
rDIDST0=(unsigned)bufPt;
rDIDSTC0=(0<<1) | (0<<0); //dst=AHB,dst_addr=inc;
rDCON0=(1<<31)|(1<<30)|(1<<29)|(1<<28)|(1<<27)|(0<<23)|(1<<22)|(2<<20)|(512/4/4);
//Handshake,AHB,interrupt,(4-burst),whole,S/W,no_autoreload,word,count=128;
// DMA on and start.
rDMASKTRIG0=(1<<1)|(1<<0);
while(!(rSRCPND & BIT_DMA0)); // Wait until Dma transfer is done.
rSRCPND=BIT_DMA0;
#elif TRANS_MODE==ASM
__RdPage512(bufPt);
#endif
/*
NF_MECC_Lock();
rNFMECCD0=NF_RDDATA();
NF_nFCE_H();
if ((rNFESTAT0&0x3) == 0x0) return OK;
else return FAIL;
*/
NF_MECC_Lock();
NF_SECC_UnLock();
Mecc=NF_RDDATA();
rNFMECCD0=((Mecc&0xff00)<<8)|(Mecc&0xff);
rNFMECCD1=((Mecc&0xff000000)>>8)|((Mecc&0xff0000)>>16);
NF_SECC_Lock();
NF_RDDATA(); // read 4~7
Secc=NF_RDDATA();
rNFSECCD=((Secc&0xff00)<<8)|(Secc&0xff);
NF_nFCE_H();
if ((rNFESTAT0&0xf) == 0x0){
//Uart_Printf("ECC OK!\n");
return OK;
}
else {
//Uart_Printf("ECC FAIL!\n");
ecc0 = (U8)(rNFESTAT0&0xf);
Uart_SendByte(ecc0);
return FAIL;
}
}
void Nand_Reset(void)
{
int i;
NF_nFCE_L();
NF_CLEAR_RB();
NF_CMD(0xFF); //reset command
for(i=0;i<10;i++); //tWB = 100ns. //??????
NF_DETECT_RB();
NF_nFCE_H();
}
void NF8_Init(void)
{
// for S3C2440
rNFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4)|(0<<0);
// TACLS [14:12] CLE&ALE duration = HCLK*TACLS.
// TWRPH0 [10:8] TWRPH0 duration = HCLK*(TWRPH0+1)
// TWRPH1 [6:4] TWRPH1 duration = HCLK*(TWRPH1+1)
// AdvFlash(R) [3] Advanced NAND, 0:256/512, 1:1024/2048
// PageSize(R) [2] NAND memory page size
// when [3]==0, 0:256, 1:512 bytes/page.
// when [3]==1, 0:1024, 1:2048 bytes/page.
// AddrCycle(R) [1] NAND flash addr size
// when [3]==0, 0:3-addr, 1:4-addr.
// when [3]==1, 0:4-addr, 1:5-addr.
// BusWidth(R/W) [0] NAND bus width. 0:8-bit, 1:16-bit.
rNFCONT = (0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(1<<6)|(1<<5)|(1<<4)|(1<<1)|(1<<0);
// Lock-tight [13] 0:Disable lock, 1:Enable lock.
// Soft Lock [12] 0:Disable lock, 1:Enable lock.
// EnablillegalAcINT[10] Illegal access interupt control. 0:Disable, 1:Enable
// EnbRnBINT [9] RnB interrupt. 0:Disable, 1:Enable
// RnB_TrandMode[8] RnB transition detection config. 0:Low to High, 1:High to Low
// SpareECCLock [6] 0:Unlock, 1:Lock
// MainECCLock [5] 0:Unlock, 1:Lock
// InitECC(W) [4] 1:Init ECC decoder/encoder.
// Reg_nCE [1] 0:nFCE=0, 1:nFCE=1.
// NANDC Enable [0] operating mode. 0:Disable, 1:Enable.
// rNFSTAT = 0;
// Nand_Reset();
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -