📄 project.nb
字号:
(************** Content-type: application/mathematica **************
CreatedBy='Mathematica 5.2'
Mathematica-Compatible Notebook
This notebook can be used with any Mathematica-compatible
application, such as Mathematica, MathReader or Publicon. The data
for the notebook starts with the line containing stars above.
To get the notebook into a Mathematica-compatible application, do
one of the following:
* Save the data starting with the line of stars above into a file
with a name ending in .nb, then open the file inside the
application;
* Copy the data starting with the line of stars above to the
clipboard, then use the Paste menu command inside the application.
Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode. Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing
the word CacheID, otherwise Mathematica-compatible applications may
try to use invalid cache data.
For more information on notebooks and Mathematica-compatible
applications, contact Wolfram Research:
web: http://www.wolfram.com
email: info@wolfram.com
phone: +1-217-398-0700 (U.S.)
Notebook reader applications are available free of charge from
Wolfram Research.
*******************************************************************)
(*CacheID: 232*)
(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[ 20020, 517]*)
(*NotebookOutlinePosition[ 20666, 539]*)
(* CellTagsIndexPosition[ 20622, 535]*)
(*WindowFrame->Normal*)
Notebook[{
Cell[BoxData[{
\(\($PrePrint =
If[MatrixQ[#1] || VectorQ[#1],
MatrixForm[#1], #1] &;\)\[IndentingNewLine]\), "\
\[IndentingNewLine]",
\(\[Beta]\_0[X_] :=
ArcTan[X\[LeftDoubleBracket]1\[RightDoubleBracket]*
Sin[X\[LeftDoubleBracket]4\[RightDoubleBracket]]/\((1 -
X\[LeftDoubleBracket]1\[RightDoubleBracket]*
Cos[X\[LeftDoubleBracket]4\[RightDoubleBracket]])\)]\), "\
\[IndentingNewLine]",
\(\[Delta]\_0[X_] :=
ArcCos[\((\((X\[LeftDoubleBracket]1\[RightDoubleBracket])\)^2 - \((X\
\[LeftDoubleBracket]2\[RightDoubleBracket])\)^2 + \((X\[LeftDoubleBracket]3\
\[RightDoubleBracket])\)^2 + 1 -
2*X\[LeftDoubleBracket]1\[RightDoubleBracket]*
Cos[X\[LeftDoubleBracket]4\[RightDoubleBracket]])\)/\((2*
X\[LeftDoubleBracket]3\[RightDoubleBracket]*
Sqrt[\((X\[LeftDoubleBracket]1\[RightDoubleBracket])\)^2 + 1 -
2*X\[LeftDoubleBracket]1\[RightDoubleBracket]*
Cos[X\[LeftDoubleBracket]4\[RightDoubleBracket]]])\)]\
\[IndentingNewLine] (*\:6211\:4eec\:6bcf\:96943\:5ea6\:53d6\:4e00\:70b9, \
\:5171\:8ba160\:4e2a\:70b9*) \), "\[IndentingNewLine]",
\(\[Beta]\_m[X_] :=
ArcTan[X\[LeftDoubleBracket]1\[RightDoubleBracket]*
Sin[X\[LeftDoubleBracket]4\[RightDoubleBracket] +
i*\[Pi]/60]/\((1 -
X\[LeftDoubleBracket]1\[RightDoubleBracket]*
Cos[X\[LeftDoubleBracket]4\[RightDoubleBracket] +
i*\[Pi]/60])\)]\), "\[IndentingNewLine]",
\(\[Delta]\_m[X_] :=
ArcCos[\((\((X\[LeftDoubleBracket]1\[RightDoubleBracket])\)^2 - \((X\
\[LeftDoubleBracket]2\[RightDoubleBracket])\)^2 + \((X\[LeftDoubleBracket]3\
\[RightDoubleBracket])\)^2 + 1 -
2*X\[LeftDoubleBracket]1\[RightDoubleBracket]*
Cos[X\[LeftDoubleBracket]4\[RightDoubleBracket] +
i*\[Pi]/60])\)/\((2*
X\[LeftDoubleBracket]3\[RightDoubleBracket]*
Sqrt[\((X\[LeftDoubleBracket]1\[RightDoubleBracket])\)^2 + 1 -
2*X\[LeftDoubleBracket]1\[RightDoubleBracket]*
Cos[X\[LeftDoubleBracket]4\[RightDoubleBracket] +
i*\[Pi]/
60]])\)]\[IndentingNewLine]\[IndentingNewLine] \
(*\:673a\:6784\:7684\:8f93\:51fa\:89d2\:5ea6\:4e3a\[CurlyPhi] = \[Beta]\_0 + \
\[Delta]\_0 - \[Beta]\_m - \[Delta]\_m*) \), "\[IndentingNewLine]",
\(f[X_] := \[Beta]\_0[X] + \[Delta]\_0[X] - \[Beta]\_m[X] - \[Delta]\_m[
X]\[IndentingNewLine]\[IndentingNewLine] (*\(f\_m\) \:4e3a\:7ed9\
\:5b9a\:7684\:76ee\:6807\:51fd\:6570*) \[IndentingNewLine]\), "\
\[IndentingNewLine]",
\(\(f\_m = \[Pi]*
Sin[i*\[Pi]/60]/
6;\)\[IndentingNewLine] \
(*fobj\:4e3a\:518d\:73b0\:51fd\:6570\:548c\:76ee\:6807\:51fd\:6570\:4e4b\:95f4\
\:7684\:504f\:5dee*) \), "\[IndentingNewLine]",
\(fobj[
X_] := \[Sum]\+\(i = 0\)\%60\((f[X] -
f\_m)\)^2\), "\[IndentingNewLine]",
\(\(dvX = {l1, l2, l3, \[Theta]0};\)\), "\[IndentingNewLine]",
\(\)}], "Input"],
Cell[BoxData[
\(\(\( (*g1~
g9\:4e3a\:6c42fobj\:6700\:5c0f\:503c\:7684\:7ea6\:675f\:6761\:4ef6\
*) \)\(\[IndentingNewLine]\)\(g1[X_] := \(-1\) +
X\[LeftDoubleBracket]1\[RightDoubleBracket] +
X\[LeftDoubleBracket]2\[RightDoubleBracket] -
X\[LeftDoubleBracket]3\[RightDoubleBracket]\n
g2[X_] := \(-1\) + X\[LeftDoubleBracket]1\[RightDoubleBracket] -
X\[LeftDoubleBracket]2\[RightDoubleBracket] +
X\[LeftDoubleBracket]3\[RightDoubleBracket]\n
g3[X_] :=
1 + X\[LeftDoubleBracket]1\[RightDoubleBracket] -
X\[LeftDoubleBracket]2\[RightDoubleBracket] -
X\[LeftDoubleBracket]3\[RightDoubleBracket]\[IndentingNewLine]
g4[X_] := \(-2\)*X\[LeftDoubleBracket]2\[RightDoubleBracket]*
X\[LeftDoubleBracket]3\[RightDoubleBracket]*
Cos[40*\[Pi]/
180] + \((X\[LeftDoubleBracket]2\[RightDoubleBracket])\)^2 + \
\((X\[LeftDoubleBracket]3\[RightDoubleBracket])\)^2 - \((1 -
X\[LeftDoubleBracket]1\[RightDoubleBracket])\)^2\
\[IndentingNewLine]
g5[X_] :=
2*X\[LeftDoubleBracket]2\[RightDoubleBracket]*
X\[LeftDoubleBracket]3\[RightDoubleBracket]*
Cos[140*\[Pi]/
180] - \((X\[LeftDoubleBracket]2\[RightDoubleBracket])\)^2 - \
\((X\[LeftDoubleBracket]3\[RightDoubleBracket])\)^2 + \((1 +
X\[LeftDoubleBracket]1\[RightDoubleBracket])\)^2\
\[IndentingNewLine]
g6[X_] := \(-X\[LeftDoubleBracket]4\[RightDoubleBracket]\)\
\[IndentingNewLine]
g7[X_] := \(-X\[LeftDoubleBracket]1\[RightDoubleBracket]\) +
0.1\[IndentingNewLine]
g8[X_] := \(-X\[LeftDoubleBracket]2\[RightDoubleBracket]\) +
0.1\[IndentingNewLine]
g9[X_] := \(-X\[LeftDoubleBracket]3\[RightDoubleBracket]\) +
0.1\[IndentingNewLine]
\)\)\)], "Input"],
Cell[BoxData[
\(\(\( (*\:672c\:9898\:91c7\:7528 "\<\:589e\:5e7f\:62c9\:683c\:6717\:65e5\
\:4e58\:5b50\:6cd5\>" \:6c42\:89e3,
lamda\:4e3a\:62c9\:683c\:6717\:65e5\:4e58\:5b50,
penalty\:4e3a\:60e9\:7f5a\:56e0\:5b50*) \)\(\[IndentingNewLine]\)\(\
lamda = {lam1, lam2, lam3, lam4, lam5, lam6, lam7, lam8,
lam9};\)\)\)], "Input"],
Cell[BoxData[
\(\(\( (*AugmentedLagrangian\:4e3a\:589e\:5e7f\:62c9\:683c\:6717\:65e5\
\:65b9\:7a0b*) \)\(\[IndentingNewLine]\)\(\(AugmentedLagrangian :=
fobj[dvX] +
lamda[\([1]\)]\ *\
Max[\ g1[dvX], \ \(-lamda[\([1]\)]\)/\((2*penalty)\)]\ + \
penalty\ *\
Max[\ g1[dvX], \ \(-lamda[\([1]\)]\)/\((2*penalty)\)]\^2 +
lamda[\([2]\)]\ *\
Max[\ g2[dvX], \ \(-lamda[\([2]\)]\)/\((2*penalty)\)]\ + \
penalty\ *\
Max[\ g2[dvX], \ \(-lamda[\([2]\)]\)/\((2*penalty)\)]\^2 +
lamda[\([3]\)]\ *\
Max[\ g3[dvX], \ \(-lamda[\([3]\)]\)/\((2*penalty)\)]\ + \
penalty\ *\
Max[\ g3[dvX], \ \(-lamda[\([3]\)]\)/\((2*penalty)\)]\^2 +
lamda[\([4]\)]\ *\
Max[\ g4[dvX], \ \(-lamda[\([4]\)]\)/\((2*penalty)\)]\ + \
penalty\ *\
Max[\ g4[dvX], \ \(-lamda[\([4]\)]\)/\((2*penalty)\)]\^2 +
lamda[\([5]\)]\ *\
Max[\ g5[dvX], \ \(-lamda[\([5]\)]\)/\((2*penalty)\)]\ +
penalty\ *\
Max[\ g5[dvX], \ \(-lamda[\([5]\)]\)/\((2*penalty)\)]\^2 +
lamda[\([6]\)]\ *\
Max[\ g6[dvX], \ \(-lamda[\([6]\)]\)/\((2*penalty)\)]\ + \
penalty\ *\
Max[\ g6[dvX], \ \(-lamda[\([6]\)]\)/\((2*penalty)\)]\^2 +
lamda[\([7]\)]\ *\
Max[\ g7[dvX], \ \(-lamda[\([7]\)]\)/\((2*penalty)\)]\ +
penalty\ *\
Max[\ g7[dvX], \ \(-lamda[\([7]\)]\)/\((2*penalty)\)]\^2 +
lamda[\([8]\)]\ *\
Max[\ g8[dvX], \ \(-lamda[\([8]\)]\)/\((2*penalty)\)]\ +
penalty\ *\
Max[\ g8[dvX], \ \(-lamda[\([8]\)]\)/\((2*penalty)\)]\^2 +
lamda[\([9]\)]\ *\
Max[\ g9[dvX], \ \(-lamda[\([9]\)]\)/\((2*penalty)\)]\ +
penalty\ *\
Max[\ g9[dvX], \ \(-lamda[\([9]\)]\)/\((2*penalty)\)]\^2\)\(\
\[IndentingNewLine]\)
\)\)\)], "Input"],
Cell[BoxData[
\(\(\( (*\:8bbe\:7f6e\:62c9\:683c\:6717\:65e5\:4e58\:5b50, \:60e9\:7f5a\
\:56e0\:5b50\:548c\:672a\:77e5\:91cf\:7684\:521d\:503c, \:5e76\:8fdb\:884c\
\:7b2c\:4e00\:6b21\:8ba1\:7b97*) \)\(\[IndentingNewLine]\)\(L1 = 0.0;
L2 = 0.0; L3 = 0.0; L4 = 0.0; L5 = 0.0; L6 = 0.0; L7 = 0.0; L8 = 0.0;
L9 = 0.0; P = 0.0001;\n
\(x0 = {0.2, 0.9, 0.7, 1};\)\)\)\)], "Input"],
Cell[BoxData[
\(\(\(augmented :=
AugmentedLagrangian\ /. \ {lam1 -> \ L1, \ lam2 -> L2, \ lam3 -> L3, \
lam4 -> L4, \ lam5 -> L5, \ lam6 -> L6, \ lam7 -> L7, \
lam8 -> L8, \ lam9 -> L9, \ penalty -> P}\)\(\[IndentingNewLine]\)
\)\)], "Input"],
Cell[CellGroupData[{
Cell[BoxData[
\(\(\( \
(*\:8c03\:7528UnconstrainedMin\:7a0b\:5e8f\:5305\:91cc\:7684SequentialSimplex\
\:51fd\:6570*) \)\(\[IndentingNewLine]\)\(<< "\<UnconstrainedMin.m\>"\
\[IndentingNewLine]
Options[SequentialSimplex]\)\)\)], "Input"],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]",
TagBox[GridBox[{
{\(SolutionHistory \[Rule] False\)},
{\(PlotHistory \[Rule] False\)},
{\(Epsilon \[Rule] Automatic\)},
{\(MaxIterations \[Rule] 50\)},
{\(ReflectioN \[Rule] 1.`\)},
{\(ExpansioN \[Rule] 2.`\)},
{\(ContractioN \[Rule] 0.5`\)}
},
RowSpacings->1,
ColumnAlignments->{Left}],
Column], "\[NoBreak]", ")"}],
Function[ BoxForm`e$,
MatrixForm[ BoxForm`e$]]]], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
\(\(\( \
(*\:4e0b\:9762\:4e09\:4e2a\:4e3aSequentialSimplex\:51fd\:6570\:91cc\:6240\
\:8981\:7528\:5230\:7684\:4e09\:4e2a\:6761\:4ef6*) \)\(\[IndentingNewLine]\)\(\
\(size = 0.05;\)\[IndentingNewLine]
dvX\[IndentingNewLine]
x0\)\)\)], "Input"],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]",
TagBox[GridBox[{
{"l1"},
{"l2"},
{"l3"},
{"\[Theta]0"}
},
RowSpacings->1,
ColumnAlignments->{Left}],
Column], "\[NoBreak]", ")"}],
Function[ BoxForm`e$,
MatrixForm[ BoxForm`e$]]]], "Output"],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]",
TagBox[GridBox[{
{"0.2`"},
{"0.9`"},
{"0.7`"},
{"1"}
},
RowSpacings->1,
ColumnAlignments->{Left}],
Column], "\[NoBreak]", ")"}],
Function[ BoxForm`e$,
MatrixForm[ BoxForm`e$]]]], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
\(\(lastPt =
SequentialSimplex[augmented, dvX, x0, size, PlotHistory \[Rule] True,
MaxIterations \[Rule] 10,
Epsilon \[Rule] 1\/10\^2];\)\), "\[IndentingNewLine]",
\(x0 = \(Last[
lastPt]\)\[LeftDoubleBracket]3\[RightDoubleBracket]\)}], "Input"],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]",
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -