📄 power.m
字号:
function [lambda,x,iter]=power(A,tol,nmax,x0)%POWER Numerically evaluate one eigenvalue of a matrix.% LAMBDA = POWER(A) compute with the power method the % eigenvalue of A of maximum modulus.% LAMBDA = POWER(A,TOL,NMAX,X0) uses an absolute error tolerance of TOL % instead of the default, which is 1.e-6 and a maximum number of iterations% of NMAX (the default is 100), starting from the initial vector X0.% [LAMBDA,V,ITER] = POWER(A,TOL,NMAX,X0) also returns the eigenvector% V such that A*V=LAMBDA*V and the iteration number at which V was computed.[n,m] = size(A);if n ~= m, error('Only for square matrices'); endnarginif nargin == 1 tol = 1.e-06; x0 = ones(n,1); nmax = 100;end x0 = x0/norm(x0); pro = A*x0; lambda = x0'*pro;err = tol + 1; iter = 0while err > tol*abs(lambda) & abs(lambda) ~= 0 & iter <= nmax x = pro; x = x/norm(x); pro = A*x; lambdanew = x'*pro; err = abs(lambdanew - lambda); lambda = lambdanew; iter = iter + 1;end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -