📄 invshift.m
字号:
function [lambda,x,iter]=invshift(A,mu,tol,nmax,x0)%INVSHIFT Numerically evaluate one eigenvalue of a matrix.% LAMBDA = INVSHIFT(A) compute with the inverse power method the % eigenvalue of A of minimum modulus.% LAMBDA = INVSHIFT(A,MU) compute the eigenvalue% of A closest to the given number (real or complex) MU.% LAMBDA = INVSHIFT(A,MU,TOL,NMAX,X0) uses an absolute error tolerance of TOL % instead of the default, which is 1.e-6 and a maximum number of iterations% of NMAX (the default is 100), starting from the initial vector X0.% [LAMBDA,V,ITER] = INVSHIFT(A,MU,TOL,NMAX,X0) also returns the eigenvector% V such that A*V=LAMBDA*V and the iteration number at which V was computed.[n,m]=size(A);if n ~= m, error('Only for square matrices'); endif nargin == 1 x0 = rand(n,1); nmax = 100; tol = 1.e-06; mu = 0;elseif nargin == 2 x0 = rand(n,1); nmax = 100; tol = 1.e-06;end[L,U]=lu(A-mu*eye(n)); if norm(x0) == 0 x0 = rand(n,1); end x0=x0/norm(x0); z0=L\x0; pro=U\z0; lambda=x0'*pro; err=tol+1; iter=0;while err > tol*abs(lambda) & abs(lambda) ~= 0 & iter <= nmax x = pro; x = x/norm(x); z=L\x; pro=U\z; lambdanew = x'*pro; err = abs(lambdanew - lambda); lambda = lambdanew; iter = iter + 1;endlambda = 1/lambda + mu;return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -