📄 qpsk_fading.m
字号:
% Program 3-6
% qpsk_fading.m
%
% Simulation program to realize QPSK transmission system
% (under one path fading)
%
% Programmed by H.Harada and T.Yamamura
%
%******************** Preparation part *************************************
clear all
sr=256000.0; % Symbol rate
ml=2; % ml:Number of modulation levels (BPSK:ml=1, QPSK:ml=2, 16QAM:ml=4)
br=sr .* ml; % Bit rate
nd = 100; % Number of symbols that simulates in each loop
%ebn0=10; % Eb/N0
IPOINT=8; % Number of oversamples
%************************* Filter initialization ***************************
irfn=21; % Number of taps
alfs=0.5; % Rolloff factor
[xh] = hrollfcoef(irfn,IPOINT,sr,alfs,1); %Transmitter filter coefficients
[xh2] = hrollfcoef(irfn,IPOINT,sr,alfs,0); %Receiver filter coefficients
%******************* Fading initialization ********************
% If you use fading function "sefade", you can initialize all of parameters.
% Otherwise you can comment out the following initialization.
% The detailed explanation of all of valiables are mentioned in Program 2-8.
% Time resolution
tstp=1/sr/IPOINT;
% Arrival time for each multipath normalized by tstp
% If you would like to simulate under one path fading model, you have only to set
% direct wave.
itau = [0];
% Mean power for each multipath normalized by direct wave.
% If you would like to simulate under one path fading model, you have only to set
% direct wave.
dlvl = [0];
% Number of waves to generate fading for each multipath.
% In normal case, more than six waves are needed to generate Rayleigh fading
n0=[6];
% Initial Phase of delayed wave
% In this simulation four-path Rayleigh fading are considered.
th1=[0.0];
% Number of fading counter to skip
itnd0=nd*IPOINT*100;
% Initial value of fading counter
% In this simulation one-path Rayleigh fading are considered.
% Therefore one fading counter are needed.
itnd1=[1000];
% Number of directwave + Number of delayed wave
% In this simulation one-path Rayleigh fading are considered
now1=1;
% Maximum Doppler frequency [Hz]
% You can insert your favorite value
fd=160;
% You can decide two mode to simulate fading by changing the variable flat
% flat : flat fading or not
% (1->flat (only amplitude is fluctuated),0->nomal(phase and amplitude are fluctutated)
flat =1;
%******************** START CALCULATION *************************************
ebn0=0:40
nloop=100; % Number of simulation loops
for i=1:length(ebn0)
noe = 0; % Number of error data
nod = 0; % Number of transmitted data
noep=0;
nodp=0;
for iii=1:nloop
%*************************** Data generation ********************************
data1=rand(1,nd*ml)>0.5; % rand: built in function
%*************************** QPSK Modulation ********************************
[ich,qch]=qpskmod(data1,1,nd,ml);
[ich1,qch1]= compoversamp(ich,qch,length(ich),IPOINT);
[ich2,qch2]= compconv(ich1,qch1,xh);
%**************************** Attenuation Calculation ***********************
spow=sum(ich2.*ich2+qch2.*qch2)/nd; % sum: built in function
attn=0.5*spow*sr/br*10.^(-ebn0(i)/10);
attn=sqrt(attn); % sqrt: built in function
%********************** Fading channel **********************
% Generated data are fed into a fading simulator
[ifade,qfade]=sefade(ich2,qch2,itau,dlvl,th1,n0,itnd1,now1,length(ich2),tstp,fd,flat);
% Updata fading counter
itnd1 = itnd1+ itnd0;
%********************* Add White Gaussian Noise (AWGN) **********************
[ich3,qch3]= comb(ifade,qfade,attn);% add white gaussian noise
[ich4,qch4]= compconv(ich3,qch3,xh2);
syncpoint=irfn*IPOINT+1;
ich5=ich4(syncpoint:IPOINT:length(ich4));
qch5=qch4(syncpoint:IPOINT:length(qch4));
%********************* Add White Gaussian Noise (AWGN) without fading*********
[ichp3,qchp3]= comb(ich2,qch2,attn);% add white gaussian noise
[ichp4,qchp4]= compconv(ichp3,qchp3,xh2);
syncpoint=irfn*IPOINT+1;
ichp5=ichp4(syncpoint:IPOINT:length(ichp4));
qchp5=qchp4(syncpoint:IPOINT:length(qchp4));
%**************************** QPSK Demodulation *****************************
[demodata]=qpskdemod(ich5,qch5,1,nd,ml);
[demodatap]=qpskdemod(ichp5,qchp5,1,nd,ml);
%************************** Bit Error Rate (BER) ****************************
noe2=sum(abs(data1-demodata)); % sum: built in function
noep2=sum(abs(data1-demodatap));
nod2=length(data1); % length: built in function
nodp2=nod2;
noe=noe+noe2;
noep=noep+noep2;
nod=nod+nod2;
nodp=nodp+nodp2
%fprintf('%d\t%e\n',iii,noe2/nod2); % fprintf: built in function
end % for iii=1:nloop
%********************** Output result ***************************
berp(i)=noep/nodp;
ber(i) = noe/nod;
Qx=(1/2).*erfc(sqrt(10.^(ebn0./10)));
Fx=(1/2).*(1-1./sqrt(1+10.^(-ebn0./10)));
fprintf('%d\t%e\n',i,ber(i));
%fprintf('%d\t%d\t%d\t%e\n',ebn0,noe,nod,noe/nod); % fprintf: built in function
%fid = fopen('BERqpskfad.dat','a');
%fprintf(fid,'%d\t%e\t%f\t%f\t\n',ebn0,noe/nod,noe,nod); % fprintf: built in function
%fclose(fid);
end
figure;
semilogy(ebn0,Qx,'r-',ebn0,berp,'-',ebn0,Fx,'-',ebn0, ber, 'b-');
xlabel('Eb/No (dB)'); ylabel('BER');
title('Performance of QPSK');
axis([0 40 1E-4 1]);
legend('QPSK AWGN (Theory)','QPSK AWGN(Simulation)','QPSK Rayleigh (theory)','QPSK Rayleigh(Simulation)');
grid on;
%******************** end of file ***************************
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -