📄 wmlquaternion.inl
字号:
Real fTwz = fTz*m_afTuple[0];
Real fTxx = fTx*m_afTuple[1];
Real fTxy = fTy*m_afTuple[1];
Real fTxz = fTz*m_afTuple[1];
Real fTyy = fTy*m_afTuple[2];
Real fTyz = fTz*m_afTuple[2];
Real fTzz = fTz*m_afTuple[3];
rkRot(0,0) = ((Real)1.0)-(fTyy+fTzz);
rkRot(0,1) = fTxy-fTwz;
rkRot(0,2) = fTxz+fTwy;
rkRot(1,0) = fTxy+fTwz;
rkRot(1,1) = ((Real)1.0)-(fTxx+fTzz);
rkRot(1,2) = fTyz-fTwx;
rkRot(2,0) = fTxz-fTwy;
rkRot(2,1) = fTyz+fTwx;
rkRot(2,2) = ((Real)1.0)-(fTxx+fTyy);
}
//----------------------------------------------------------------------------
template <class Real>
void Quaternion<Real>::FromRotationMatrix (const Vector3<Real> akRotColumn[3])
{
Matrix3<Real> kRot;
for (int iCol = 0; iCol < 3; iCol++)
{
kRot(0,iCol) = akRotColumn[iCol][0];
kRot(1,iCol) = akRotColumn[iCol][1];
kRot(2,iCol) = akRotColumn[iCol][2];
}
FromRotationMatrix(kRot);
}
//----------------------------------------------------------------------------
template <class Real>
void Quaternion<Real>::ToRotationMatrix (Vector3<Real> akRotColumn[3]) const
{
Matrix3<Real> kRot;
ToRotationMatrix(kRot);
for (int iCol = 0; iCol < 3; iCol++)
{
akRotColumn[iCol][0] = kRot(0,iCol);
akRotColumn[iCol][1] = kRot(1,iCol);
akRotColumn[iCol][2] = kRot(2,iCol);
}
}
//----------------------------------------------------------------------------
template <class Real>
void Quaternion<Real>::FromAxisAngle (const Vector3<Real>& rkAxis,
Real fAngle)
{
// assert: axis[] is unit length
//
// The quaternion representing the rotation is
// q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k)
Real fHalfAngle = ((Real)0.5)*fAngle;
Real fSin = Math<Real>::Sin(fHalfAngle);
m_afTuple[0] = Math<Real>::Cos(fHalfAngle);
m_afTuple[1] = fSin*rkAxis[0];
m_afTuple[2] = fSin*rkAxis[1];
m_afTuple[3] = fSin*rkAxis[2];
}
//----------------------------------------------------------------------------
template <class Real>
void Quaternion<Real>::ToAxisAngle (Vector3<Real>& rkAxis, Real& rfAngle)
const
{
// The quaternion representing the rotation is
// q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k)
Real fSqrLength = m_afTuple[1]*m_afTuple[1] + m_afTuple[2]*m_afTuple[2]
+ m_afTuple[3]*m_afTuple[3];
if ( fSqrLength > Math<Real>::EPSILON )
{
rfAngle = ((Real)2.0)*Math<Real>::ACos(m_afTuple[0]);
Real fInvLength = Math<Real>::InvSqrt(fSqrLength);
rkAxis[0] = m_afTuple[1]*fInvLength;
rkAxis[1] = m_afTuple[2]*fInvLength;
rkAxis[2] = m_afTuple[3]*fInvLength;
}
else
{
// angle is 0 (mod 2*pi), so any axis will do
rfAngle = (Real)0.0;
rkAxis[0] = (Real)1.0;
rkAxis[1] = (Real)0.0;
rkAxis[2] = (Real)0.0;
}
}
//----------------------------------------------------------------------------
template <class Real>
Real Quaternion<Real>::Dot (const Quaternion& rkQ) const
{
Real fDot = (Real)0.0;
for (int i = 0; i < 4; i++)
fDot += m_afTuple[i]*rkQ.m_afTuple[i];
return fDot;
}
//----------------------------------------------------------------------------
template <class Real>
Quaternion<Real> Quaternion<Real>::Inverse () const
{
Quaternion<Real> kInverse;
Real fNorm = (Real)0.0;
int i;
for (i = 0; i < 4; i++)
fNorm += m_afTuple[i]*m_afTuple[i];
if ( fNorm > (Real)0.0 )
{
Real fInvNorm = ((Real)1.0)/fNorm;
kInverse.m_afTuple[0] = m_afTuple[0]*fInvNorm;
kInverse.m_afTuple[1] = -m_afTuple[1]*fInvNorm;
kInverse.m_afTuple[2] = -m_afTuple[2]*fInvNorm;
kInverse.m_afTuple[3] = -m_afTuple[3]*fInvNorm;
}
else
{
// return an invalid result to flag the error
for (i = 0; i < 4; i++)
kInverse.m_afTuple[i] = (Real)0.0;
}
return kInverse;
}
//----------------------------------------------------------------------------
template <class Real>
Quaternion<Real> Quaternion<Real>::Conjugate () const
{
// assert: 'this' is unit length
return Quaternion<Real>(m_afTuple[0],-m_afTuple[1],-m_afTuple[2],
-m_afTuple[3]);
}
//----------------------------------------------------------------------------
template <class Real>
Quaternion<Real> Quaternion<Real>::Exp () const
{
// If q = A*(x*i+y*j+z*k) where (x,y,z) is unit length, then
// exp(q) = cos(A)+sin(A)*(x*i+y*j+z*k). If sin(A) is near zero,
// use exp(q) = cos(A)+A*(x*i+y*j+z*k) since A/sin(A) has limit 1.
Quaternion<Real> kResult;
Real fAngle = Math<Real>::Sqrt(m_afTuple[1]*m_afTuple[1] +
m_afTuple[2]*m_afTuple[2] + m_afTuple[3]*m_afTuple[3]);
Real fSin = Math<Real>::Sin(fAngle);
kResult.m_afTuple[0] = Math<Real>::Cos(fAngle);
int i;
if ( Math<Real>::FAbs(fSin) >= Math<Real>::EPSILON )
{
Real fCoeff = fSin/fAngle;
for (i = 1; i <= 3; i++)
kResult.m_afTuple[i] = fCoeff*m_afTuple[i];
}
else
{
for (i = 1; i <= 3; i++)
kResult.m_afTuple[i] = m_afTuple[i];
}
return kResult;
}
//----------------------------------------------------------------------------
template <class Real>
Quaternion<Real> Quaternion<Real>::Log () const
{
// If q = cos(A)+sin(A)*(x*i+y*j+z*k) where (x,y,z) is unit length, then
// log(q) = A*(x*i+y*j+z*k). If sin(A) is near zero, use log(q) =
// sin(A)*(x*i+y*j+z*k) since sin(A)/A has limit 1.
Quaternion<Real> kResult;
kResult.m_afTuple[0] = (Real)0.0;
int i;
if ( Math<Real>::FAbs(m_afTuple[0]) < (Real)1.0 )
{
Real fAngle = Math<Real>::ACos(m_afTuple[0]);
Real fSin = Math<Real>::Sin(fAngle);
if ( Math<Real>::FAbs(fSin) >= Math<Real>::EPSILON )
{
Real fCoeff = fAngle/fSin;
for (i = 1; i <= 3; i++)
kResult.m_afTuple[i] = fCoeff*m_afTuple[i];
return kResult;
}
}
for (i = 1; i <= 3; i++)
kResult.m_afTuple[i] = m_afTuple[i];
return kResult;
}
//----------------------------------------------------------------------------
template <class Real>
Real Quaternion<Real>::Length () const
{
Real fLength=m_afTuple[0]*m_afTuple[0]+m_afTuple[1]*m_afTuple[1]+m_afTuple[2]*m_afTuple[2]+m_afTuple[3]*m_afTuple[3];
return sqrt(fLength);
}
//----------------------------------------------------------------------------
template <class Real>
Real Quaternion<Real>::Normalize ()
{
Real fLength = Length();
int i;
if ( fLength > Math<Real>::EPSILON )
{
Real fInvLength = ((Real)1.0)/fLength;
for (i = 0; i < 4; i++)
m_afTuple[i] *= fInvLength;
}
else
{
fLength = (Real)0.0;
for (i = 0; i < 4; i++)
m_afTuple[i] = (Real)0.0;
}
return fLength;
}
//----------------------------------------------------------------------------
template <class Real>
Vector3<Real> Quaternion<Real>::operator* (const Vector3<Real>& rkVector)
const
{
// Given a vector u = (x0,y0,z0) and a unit length quaternion
// q = <w,x,y,z>, the vector v = (x1,y1,z1) which represents the
// rotation of u by q is v = q*u*q^{-1} where * indicates quaternion
// multiplication and where u is treated as the quaternion <0,x0,y0,z0>.
// Note that q^{-1} = <w,-x,-y,-z>, so no real work is required to
// invert q. Now
//
// q*u*q^{-1} = q*<0,x0,y0,z0>*q^{-1}
// = q*(x0*i+y0*j+z0*k)*q^{-1}
// = x0*(q*i*q^{-1})+y0*(q*j*q^{-1})+z0*(q*k*q^{-1})
//
// As 3-vectors, q*i*q^{-1}, q*j*q^{-1}, and 2*k*q^{-1} are the columns
// of the rotation matrix computed in Quaternion::ToRotationMatrix.
// The vector v is obtained as the product of that rotation matrix with
// vector u. As such, the quaternion representation of a rotation
// matrix requires less space than the matrix and more time to compute
// the rotated vector. Typical space-time tradeoff...
Matrix3<Real> kRot;
ToRotationMatrix(kRot);
return kRot*rkVector;
}
//----------------------------------------------------------------------------
template <class Real>
Quaternion<Real> Quaternion<Real>::Slerp (Real fT, const Quaternion& rkP,
const Quaternion& rkQ)
{
Real fCos = rkP.Dot(rkQ);
Real fAngle = Math<Real>::ACos(fCos);
if ( Math<Real>::FAbs(fAngle) < Math<Real>::EPSILON )
return rkP;
Real fSin = Math<Real>::Sin(fAngle);
Real fInvSin = ((Real)1.0)/fSin;
Real fCoeff0 = Math<Real>::Sin((((Real)1.0)-fT)*fAngle)*fInvSin;
Real fCoeff1 = Math<Real>::Sin(fT*fAngle)*fInvSin;
return fCoeff0*rkP + fCoeff1*rkQ;
}
//----------------------------------------------------------------------------
template <class Real>
Quaternion<Real> Quaternion<Real>::SlerpExtraSpins (Real fT,
const Quaternion& rkP, const Quaternion& rkQ, int iExtraSpins)
{
Real fCos = rkP.Dot(rkQ);
Real fAngle = Math<Real>::ACos(fCos);
if ( Math<Real>::FAbs(fAngle) < Math<Real>::EPSILON )
return rkP;
Real fSin = Math<Real>::Sin(fAngle);
Real fPhase = Math<Real>::PI*iExtraSpins*fT;
Real fInvSin = ((Real)1.0)/fSin;
Real fCoeff0 = Math<Real>::Sin((((Real)1.0)-fT)*fAngle-fPhase)*fInvSin;
Real fCoeff1 = Math<Real>::Sin(fT*fAngle + fPhase)*fInvSin;
return fCoeff0*rkP + fCoeff1*rkQ;
}
//----------------------------------------------------------------------------
template <class Real>
Quaternion<Real> Quaternion<Real>::GetIntermediate (const Quaternion& rkQ0,
const Quaternion& rkQ1, const Quaternion& rkQ2)
{
// assert: Q0, Q1, Q2 all unit-length
Quaternion<Real> kQ1Inv = rkQ1.Conjugate();
Quaternion<Real> kP0 = kQ1Inv*rkQ0;
Quaternion<Real> kP2 = kQ1Inv*rkQ2;
Quaternion<Real> kArg = -((Real)0.25)*(kP0.Log()+kP2.Log());
Quaternion<Real> kA = rkQ1*kArg.Exp();
return kA;
}
//----------------------------------------------------------------------------
template <class Real>
Quaternion<Real> Quaternion<Real>::Squad (Real fT, const Quaternion& rkQ0,
const Quaternion& rkA0, const Quaternion& rkA1, const Quaternion& rkQ1)
{
Real fSlerpT = ((Real)2.0)*fT*(((Real)1.0)-fT);
Quaternion<Real> kSlerpP = Slerp(fT,rkQ0,rkQ1);
Quaternion<Real> kSlerpQ = Slerp(fT,rkA0,rkA1);
return Slerp(fSlerpT,kSlerpP,kSlerpQ);
}
//----------------------------------------------------------------------------
template <class Real>
Quaternion<Real> Quaternion<Real>::Align (const Vector3<Real>& rkV1,
const Vector3<Real>& rkV2)
{
// If V1 and V2 are not parallel, the axis of rotation is the unit-length
// vector U = Cross(V1,V2)/Length(Cross(V1,V2)). The angle of rotation,
// A, is the angle between V1 and V2. The quaternion for the rotation is
// q = cos(A/2) + sin(A/2)*(ux*i+uy*j+uz*k) where U = (ux,uy,uz).
//
// (1) Rather than extract A = acos(Dot(V1,V2)), multiply by 1/2, then
// compute sin(A/2) and cos(A/2), we reduce the computational costs by
// computing the bisector B = (V1+V2)/Length(V1+V2), so cos(A/2) =
// Dot(V1,B).
//
// (2) The rotation axis is U = Cross(V1,B)/Length(Cross(V1,B)), but
// Length(Cross(V1,B)) = Length(V1)*Length(B)*sin(A/2) = sin(A/2), in
// which case sin(A/2)*(ux*i+uy*j+uz*k) = (cx*i+cy*j+cz*k) where
// C = Cross(V1,B).
//
// If V1 and V2 are parallel, or nearly parallel as far as the floating
// point calculations are concerned, the calculation of B will produce
// the zero vector: Vector3::Normalize checks for closeness to zero and
// returns the zero vector accordingly. Thus, we test for parallelism
// by checking if cos(A/2) is zero. The test for exactly zero is usually
// not recommend for floating point arithmetic, but the implementation of
// Vector3::Normalize guarantees the comparison is robust.
Vector3<Real> kBisector = rkV1 + rkV2;
kBisector.Normalize();
Real fCosHalfAngle = rkV1.Dot(kBisector);
Vector3<Real> kCross;
if ( fCosHalfAngle != (Real)0.0 )
kCross = rkV1.Cross(kBisector);
else
kCross = rkV1.UnitCross(Vector3<Real>(rkV2.Z(),rkV2.X(),rkV2.Y()));
return Quaternion(fCosHalfAngle,kCross.X(),kCross.Y(),kCross.Z());
}
//----------------------------------------------------------------------------
template <class Real>
void Quaternion<Real>::DecomposeTwistTimesNoTwist (
const Vector3<Real>& rkAxis, Quaternion& rkTwist, Quaternion& rkNoTwist)
{
Vector3<Real> kRotatedAxis = (*this)*rkAxis;
rkNoTwist = Align(rkAxis,kRotatedAxis);
rkTwist = (*this)*rkNoTwist.Conjugate();
}
//----------------------------------------------------------------------------
template <class Real>
void Quaternion<Real>::DecomposeNoTwistTimesTwist (
const Vector3<Real>& rkAxis, Quaternion& rkTwist, Quaternion& rkNoTwist)
{
Vector3<Real> kRotatedAxis = (*this)*rkAxis;
rkNoTwist = Align(rkAxis,kRotatedAxis);
rkTwist = rkNoTwist.Conjugate()*(*this);
}
//----------------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -