⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 wmlmatrix3.inl

📁 Wild Math Library数值计算库
💻 INL
📖 第 1 页 / 共 4 页
字号:
        rkA[1][1] += afW[1];
        rkA[1][2] += afW[2];
        rkA[2][2] += afV[2]*afW[2];

        Real fA = ((Real)1.0)+fT2;
        Real fB = fT2*afV[2];
        Real fC = ((Real)1.0)+fB*afV[2];

        if ( bIdentity )
        {
            rkL[0][0] = (Real)1.0;
            rkL[0][1] = (Real)0.0;
            rkL[1][0] = (Real)0.0;
            rkL[0][2] = (Real)0.0;
            rkL[2][0] = (Real)0.0;
            rkL[1][1] = fA;
            rkL[1][2] = fB;
            rkL[2][1] = fB;
            rkL[2][2] = fC;
        }
        else
        {
            for (int iRow = 0; iRow < 3; iRow++)
            {
                Real fTmp0 = rkL[iRow][1];
                Real fTmp1 = rkL[iRow][2];
                rkL[iRow][1] = fA*fTmp0+fB*fTmp1;
                rkL[iRow][2] = fB*fTmp0+fC*fTmp1;
            }
        }
    }
}
//----------------------------------------------------------------------------
template <class Real>
void Matrix3<Real>::GolubKahanStep (Matrix3& rkA, Matrix3& rkL, Matrix3& rkR)
{
    Real fT11 = rkA[0][1]*rkA[0][1]+rkA[1][1]*rkA[1][1];
    Real fT22 = rkA[1][2]*rkA[1][2]+rkA[2][2]*rkA[2][2];
    Real fT12 = rkA[1][1]*rkA[1][2];
    Real fTrace = fT11+fT22;
    Real fDiff = fT11-fT22;
    Real fDiscr = Math<Real>::Sqrt(fDiff*fDiff+((Real)4.0)*fT12*fT12);
    Real fRoot1 = ((Real)0.5)*(fTrace+fDiscr);
    Real fRoot2 = ((Real)0.5)*(fTrace-fDiscr);

    // adjust right
    Real fY = rkA[0][0] - (Math<Real>::FAbs(fRoot1-fT22) <=
        Math<Real>::FAbs(fRoot2-fT22) ? fRoot1 : fRoot2);
    Real fZ = rkA[0][1];
    Real fInvLength = Math<Real>::InvSqrt(fY*fY+fZ*fZ);
    Real fSin = fZ*fInvLength;
    Real fCos = -fY*fInvLength;

    Real fTmp0 = rkA[0][0];
    Real fTmp1 = rkA[0][1];
    rkA[0][0] = fCos*fTmp0-fSin*fTmp1;
    rkA[0][1] = fSin*fTmp0+fCos*fTmp1;
    rkA[1][0] = -fSin*rkA[1][1];
    rkA[1][1] *= fCos;

    int iRow;
    for (iRow = 0; iRow < 3; iRow++)
    {
        fTmp0 = rkR[0][iRow];
        fTmp1 = rkR[1][iRow];
        rkR[0][iRow] = fCos*fTmp0-fSin*fTmp1;
        rkR[1][iRow] = fSin*fTmp0+fCos*fTmp1;
    }

    // adjust left
    fY = rkA[0][0];
    fZ = rkA[1][0];
    fInvLength = Math<Real>::InvSqrt(fY*fY+fZ*fZ);
    fSin = fZ*fInvLength;
    fCos = -fY*fInvLength;

    rkA[0][0] = fCos*rkA[0][0]-fSin*rkA[1][0];
    fTmp0 = rkA[0][1];
    fTmp1 = rkA[1][1];
    rkA[0][1] = fCos*fTmp0-fSin*fTmp1;
    rkA[1][1] = fSin*fTmp0+fCos*fTmp1;
    rkA[0][2] = -fSin*rkA[1][2];
    rkA[1][2] *= fCos;

    int iCol;
    for (iCol = 0; iCol < 3; iCol++)
    {
        fTmp0 = rkL[iCol][0];
        fTmp1 = rkL[iCol][1];
        rkL[iCol][0] = fCos*fTmp0-fSin*fTmp1;
        rkL[iCol][1] = fSin*fTmp0+fCos*fTmp1;
    }

    // adjust right
    fY = rkA[0][1];
    fZ = rkA[0][2];
    fInvLength = Math<Real>::InvSqrt(fY*fY+fZ*fZ);
    fSin = fZ*fInvLength;
    fCos = -fY*fInvLength;

    rkA[0][1] = fCos*rkA[0][1]-fSin*rkA[0][2];
    fTmp0 = rkA[1][1];
    fTmp1 = rkA[1][2];
    rkA[1][1] = fCos*fTmp0-fSin*fTmp1;
    rkA[1][2] = fSin*fTmp0+fCos*fTmp1;
    rkA[2][1] = -fSin*rkA[2][2];
    rkA[2][2] *= fCos;

    for (iRow = 0; iRow < 3; iRow++)
    {
        fTmp0 = rkR[1][iRow];
        fTmp1 = rkR[2][iRow];
        rkR[1][iRow] = fCos*fTmp0-fSin*fTmp1;
        rkR[2][iRow] = fSin*fTmp0+fCos*fTmp1;
    }

    // adjust left
    fY = rkA[1][1];
    fZ = rkA[2][1];
    fInvLength = Math<Real>::InvSqrt(fY*fY+fZ*fZ);
    fSin = fZ*fInvLength;
    fCos = -fY*fInvLength;

    rkA[1][1] = fCos*rkA[1][1]-fSin*rkA[2][1];
    fTmp0 = rkA[1][2];
    fTmp1 = rkA[2][2];
    rkA[1][2] = fCos*fTmp0-fSin*fTmp1;
    rkA[2][2] = fSin*fTmp0+fCos*fTmp1;

    for (iCol = 0; iCol < 3; iCol++)
    {
        fTmp0 = rkL[iCol][1];
        fTmp1 = rkL[iCol][2];
        rkL[iCol][1] = fCos*fTmp0-fSin*fTmp1;
        rkL[iCol][2] = fSin*fTmp0+fCos*fTmp1;
    }
}
//----------------------------------------------------------------------------
template <class Real>
void Matrix3<Real>::SingularValueDecomposition (Matrix3& rkL, Matrix3& rkS,
    Matrix3& rkR) const
{
    int iRow, iCol;

    Matrix3 kA = *this;
    Bidiagonalize(kA,rkL,rkR);
    rkS.MakeZero();

    const int iMax = 32;
    const Real fEpsilon = (Real)1e-04;
    for (int i = 0; i < iMax; i++)
    {
        Real fTmp, fTmp0, fTmp1;
        Real fSin0, fCos0, fTan0;
        Real fSin1, fCos1, fTan1;

        bool bTest1 = (Math<Real>::FAbs(kA[0][1]) <=
            fEpsilon*(Math<Real>::FAbs(kA[0][0]) +
            Math<Real>::FAbs(kA[1][1])));
        bool bTest2 = (Math<Real>::FAbs(kA[1][2]) <=
            fEpsilon*(Math<Real>::FAbs(kA[1][1]) +
            Math<Real>::FAbs(kA[2][2])));
        if ( bTest1 )
        {
            if ( bTest2 )
            {
                rkS[0][0] = kA[0][0];
                rkS[1][1] = kA[1][1];
                rkS[2][2] = kA[2][2];
                break;
            }
            else
            {
                // 2x2 closed form factorization
                fTmp = (kA[1][1]*kA[1][1] - kA[2][2]*kA[2][2] +
                    kA[1][2]*kA[1][2])/(kA[1][2]*kA[2][2]);
                fTan0 = ((Real)0.5)*(fTmp + Math<Real>::Sqrt(fTmp*fTmp +
                    ((Real)4.0)));
                fCos0 = Math<Real>::InvSqrt(((Real)1.0)+fTan0*fTan0);
                fSin0 = fTan0*fCos0;

                for (iCol = 0; iCol < 3; iCol++)
                {
                    fTmp0 = rkL[iCol][1];
                    fTmp1 = rkL[iCol][2];
                    rkL[iCol][1] = fCos0*fTmp0-fSin0*fTmp1;
                    rkL[iCol][2] = fSin0*fTmp0+fCos0*fTmp1;
                }
                
                fTan1 = (kA[1][2]-kA[2][2]*fTan0)/kA[1][1];
                fCos1 = Math<Real>::InvSqrt(((Real)1.0)+fTan1*fTan1);
                fSin1 = -fTan1*fCos1;

                for (iRow = 0; iRow < 3; iRow++)
                {
                    fTmp0 = rkR[1][iRow];
                    fTmp1 = rkR[2][iRow];
                    rkR[1][iRow] = fCos1*fTmp0-fSin1*fTmp1;
                    rkR[2][iRow] = fSin1*fTmp0+fCos1*fTmp1;
                }

                rkS[0][0] = kA[0][0];
                rkS[1][1] = fCos0*fCos1*kA[1][1] -
                    fSin1*(fCos0*kA[1][2]-fSin0*kA[2][2]);
                rkS[2][2] = fSin0*fSin1*kA[1][1] +
                    fCos1*(fSin0*kA[1][2]+fCos0*kA[2][2]);
                break;
            }
        }
        else 
        {
            if ( bTest2 )
            {
                // 2x2 closed form factorization 
                fTmp = (kA[0][0]*kA[0][0] + kA[1][1]*kA[1][1] -
                    kA[0][1]*kA[0][1])/(kA[0][1]*kA[1][1]);
                fTan0 = ((Real)0.5)*(-fTmp + Math<Real>::Sqrt(fTmp*fTmp +
                    ((Real)4.0)));
                fCos0 = Math<Real>::InvSqrt(((Real)1.0)+fTan0*fTan0);
                fSin0 = fTan0*fCos0;

                for (iCol = 0; iCol < 3; iCol++)
                {
                    fTmp0 = rkL[iCol][0];
                    fTmp1 = rkL[iCol][1];
                    rkL[iCol][0] = fCos0*fTmp0-fSin0*fTmp1;
                    rkL[iCol][1] = fSin0*fTmp0+fCos0*fTmp1;
                }
                
                fTan1 = (kA[0][1]-kA[1][1]*fTan0)/kA[0][0];
                fCos1 = Math<Real>::InvSqrt(((Real)1.0)+fTan1*fTan1);
                fSin1 = -fTan1*fCos1;

                for (iRow = 0; iRow < 3; iRow++)
                {
                    fTmp0 = rkR[0][iRow];
                    fTmp1 = rkR[1][iRow];
                    rkR[0][iRow] = fCos1*fTmp0-fSin1*fTmp1;
                    rkR[1][iRow] = fSin1*fTmp0+fCos1*fTmp1;
                }

                rkS[0][0] = fCos0*fCos1*kA[0][0] -
                    fSin1*(fCos0*kA[0][1]-fSin0*kA[1][1]);
                rkS[1][1] = fSin0*fSin1*kA[0][0] +
                    fCos1*(fSin0*kA[0][1]+fCos0*kA[1][1]);
                rkS[2][2] = kA[2][2];
                break;
            }
            else
            {
                GolubKahanStep(kA,rkL,rkR);
            }
        }
    }

    // positize diagonal
    for (iRow = 0; iRow < 3; iRow++)
    {
        if ( rkS[iRow][iRow] < (Real)0.0 )
        {
            rkS[iRow][iRow] = -rkS[iRow][iRow];
            for (iCol = 0; iCol < 3; iCol++)
                rkR[iRow][iCol] = -rkR[iRow][iCol];
        }
    }
}
//----------------------------------------------------------------------------
template <class Real>
void Matrix3<Real>::SingularValueComposition (const Matrix3& rkL,
    const Matrix3& rkS, const Matrix3& rkR)
{
    *this = rkL*(rkS*rkR);
}
//----------------------------------------------------------------------------
template <class Real>
void Matrix3<Real>::QDUDecomposition (Matrix3& rkQ, Matrix3& rkD,
    Matrix3& rkU) const
{
    // Factor M = QR = QDU where Q is orthogonal (rotation), D is diagonal
    // (scaling),  and U is upper triangular with ones on its diagonal
    // (shear).  Algorithm uses Gram-Schmidt orthogonalization (the QR
    // algorithm).
    //
    // If M = [ m0 | m1 | m2 ] and Q = [ q0 | q1 | q2 ], then
    //
    //   q0 = m0/|m0|
    //   q1 = (m1-(q0*m1)q0)/|m1-(q0*m1)q0|
    //   q2 = (m2-(q0*m2)q0-(q1*m2)q1)/|m2-(q0*m2)q0-(q1*m2)q1|
    //
    // where |V| indicates length of vector V and A*B indicates dot
    // product of vectors A and B.  The matrix R has entries
    //
    //   r00 = q0*m0  r01 = q0*m1  r02 = q0*m2
    //   r10 = 0      r11 = q1*m1  r12 = q1*m2
    //   r20 = 0      r21 = 0      r22 = q2*m2
    //
    // so D = diag(r00,r11,r22) and U has entries u01 = r01/r00,
    // u02 = r02/r00, and u12 = r12/r11.

    // build orthogonal matrix Q
    Real fInvLength = Math<Real>::InvSqrt(m_afEntry[0]*m_afEntry[0] +
        m_afEntry[3]*m_afEntry[3] + m_afEntry[6]*m_afEntry[6]);
    rkQ[0][0] = m_afEntry[0]*fInvLength;
    rkQ[1][0] = m_afEntry[3]*fInvLength;
    rkQ[2][0] = m_afEntry[6]*fInvLength;

    Real fDot = rkQ[0][0]*m_afEntry[1] + rkQ[1][0]*m_afEntry[4] +
        rkQ[2][0]*m_afEntry[7];
    rkQ[0][1] = m_afEntry[1]-fDot*rkQ[0][0];
    rkQ[1][1] = m_afEntry[4]-fDot*rkQ[1][0];
    rkQ[2][1] = m_afEntry[7]-fDot*rkQ[2][0];
    fInvLength = Math<Real>::InvSqrt(rkQ[0][1]*rkQ[0][1] +
        rkQ[1][1]*rkQ[1][1] + rkQ[2][1]*rkQ[2][1]);
    rkQ[0][1] *= fInvLength;
    rkQ[1][1] *= fInvLength;
    rkQ[2][1] *= fInvLength;

    fDot = rkQ[0][0]*m_afEntry[2] + rkQ[1][0]*m_afEntry[5] +
        rkQ[2][0]*m_afEntry[8];
    rkQ[0][2] = m_afEntry[2]-fDot*rkQ[0][0];
    rkQ[1][2] = m_afEntry[5]-fDot*rkQ[1][0];
    rkQ[2][2] = m_afEntry[8]-fDot*rkQ[2][0];
    fDot = rkQ[0][1]*m_afEntry[2] + rkQ[1][1]*m_afEntry[5] +
        rkQ[2][1]*m_afEntry[8];
    rkQ[0][2] -= fDot*rkQ[0][1];
    rkQ[1][2] -= fDot*rkQ[1][1];
    rkQ[2][2] -= fDot*rkQ[2][1];
    fInvLength = Math<Real>::InvSqrt(rkQ[0][2]*rkQ[0][2] +
        rkQ[1][2]*rkQ[1][2] + rkQ[2][2]*rkQ[2][2]);
    rkQ[0][2] *= fInvLength;
    rkQ[1][2] *= fInvLength;
    rkQ[2][2] *= fInvLength;

    // guarantee that orthogonal matrix has determinant 1 (no reflections)
    Real fDet = rkQ[0][0]*rkQ[1][1]*rkQ[2][2] + rkQ[0][1]*rkQ[1][2]*rkQ[2][0]
        +  rkQ[0][2]*rkQ[1][0]*rkQ[2][1] - rkQ[0][2]*rkQ[1][1]*rkQ[2][0]
        -  rkQ[0][1]*rkQ[1][0]*rkQ[2][2] - rkQ[0][0]*rkQ[1][2]*rkQ[2][1];

    if ( fDet < (Real)0.0 )
    {
        for (int iRow = 0; iRow < 3; iRow++)
        {
            for (int iCol = 0; iCol < 3; iCol++)
                rkQ[iRow][iCol] = -rkQ[iRow][iCol];
        }
    }

    // build "right" matrix R
    Matrix3 kR;
    kR[0][0] = rkQ[0][0]*m_afEntry[0] + rkQ[1][0]*m_afEntry[3] +
        rkQ[2][0]*m_afEntry[6];
    kR[0][1] = rkQ[0][0]*m_afEntry[1] + rkQ[1][0]*m_afEntry[4] +
        rkQ[2][0]*m_afEntry[7];
    kR[1][1] = rkQ[0][1]*m_afEntry[1] + rkQ[1][1]*m_afEntry[4] +
        rkQ[2][1]*m_afEntry[7];
    kR[0][2] = rkQ[0][0]*m_afEntry[2] + rkQ[1][0]*m_afEntry[5] +
        rkQ[2][0]*m_afEntry[8];
    kR[1][2] = rkQ[0][1]*m_afEntry[2] + rkQ[1][1]*m_afEntry[5] +
        rkQ[2][1]*m_afEntry[8];
    kR[2][2] = rkQ[0][2]*m_afEntry[2] + rkQ[1][2]*m_afEntry[5] +
        rkQ[2][2]*m_afEntry[8];

    // the scaling component
    rkD.MakeDiagonal(kR[0][0],kR[1][1],kR[2][2]);

    // the shear component
    Real fInvD0 = ((Real)1.0)/rkD[0][0];
    rkU[0][0] = (Real)1.0;
    rkU[0][1] = kR[0][1]*fInvD0;
    rkU[0][2] = kR[0][2]*fInvD0;
    rkU[1][0] = (Real)0.0;
    rkU[1][1] = (Real)1.0;
    rkU[1][2] = kR[1][2]/rkD[1][1];
    rkU[2][0] = (Real)0.0;
    rkU[2][1] = (Real)0.0;
    rkU[2][2] = (Real)1.0;
}
//----------------------------------------------------------------------------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -