⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 wmlmatrix3.h

📁 Wild Math Library数值计算库
💻 H
字号:
// Magic Software, Inc.
// http://www.magic-software.com
// http://www.wild-magic.com
// Copyright (c) 2004.  All Rights Reserved
//
// The Wild Magic Library (WML) source code is supplied under the terms of
// the license agreement http://www.magic-software.com/License/WildMagic.pdf
// and may not be copied or disclosed except in accordance with the terms of
// that agreement.

#ifndef WMLMATRIX3_H
#define WMLMATRIX3_H

// The (x,y,z) coordinate system is assumed to be right-handed.  Coordinate
// axis rotation matrices are of the form
//   RX =    1       0       0
//           0     cos(t) -sin(t)
//           0     sin(t)  cos(t)
// where t > 0 indicates a counterclockwise rotation in the yz-plane
//   RY =  cos(t)    0     sin(t)
//           0       1       0
//        -sin(t)    0     cos(t)
// where t > 0 indicates a counterclockwise rotation in the zx-plane
//   RZ =  cos(t) -sin(t)    0
//         sin(t)  cos(t)    0
//           0       0       1
// where t > 0 indicates a counterclockwise rotation in the xy-plane.

#include "WmlMatrix.h"
#include "WmlVector3.h"

namespace Wml
{

template <class Real>
class Matrix3 : public Matrix<3,Real>
{
public:
    // construction
    Matrix3 ();
    Matrix3 (const Matrix3& rkM);
    Matrix3 (const Matrix<3,Real>& rkM);

    // input Mrc is in row r, column c.
    Matrix3 (Real fM00, Real fM01, Real fM02,
             Real fM10, Real fM11, Real fM12,
             Real fM20, Real fM21, Real fM22);

    // Create a matrix from an array of numbers.  The input array is
    // interpreted based on the Boolean input as
    //   true:  entry[0..8]={m00,m01,m02,m10,m11,m12,m20,m21,m22} [row major]
    //   false: entry[0..8]={m00,m10,m20,m01,m11,m21,m02,m12,m22} [col major]
    Matrix3 (const Real afEntry[9], bool bRowMajor);

    // Create matrices based on vector input.  The Boolean is interpreted as
    //   true: vectors are columns of the matrix
    //   false: vectors are rows of the matrix
    Matrix3 (const Vector3<Real>& rkU, const Vector3<Real>& rkV,
        const Vector3<Real>& rkW, bool bColumns);
    Matrix3 (const Vector3<Real>* akV, bool bColumns);

    // create a tensor product U*V^T
    Matrix3 (const Vector3<Real>& rkU, const Vector3<Real>& rkV);
    void MakeTensorProduct (const Vector3<Real>& rkU,
        const Vector3<Real>& rkV);

    // create a diagonal matrix
    Matrix3 (Real fM00, Real fM11, Real fM22);
    void MakeDiagonal (Real fM00, Real fM11, Real fM22);

    // Create rotation matrices (positive angle - counterclockwise).  The
    // angle must be in radians, not degrees.
    Matrix3 (const Vector3<Real>& rkAxis, Real fAngle);
    void FromAxisAngle (const Vector3<Real>& rkAxis, Real fAngle);

    // assignment
    Matrix3& operator= (const Matrix3& rkM);
    Matrix3& operator= (const Matrix<3,Real>& rkM);

    // matrix operations
    Matrix3 Inverse () const;
    Matrix3 Adjoint () const;
    Real Determinant () const;

    // The matrix must be a rotation for these functions to be valid.  The
    // last function uses Gram-Schmidt orthonormalization applied to the
    // columns of the rotation matrix.  The angle must be in radians, not
    // degrees.
    void ToAxisAngle (Vector3<Real>& rkAxis, Real& rfAngle) const;
    void Orthonormalize ();

    // The matrix must be orthonormal.  The decomposition is yaw*pitch*roll
    // where yaw is rotation about the Up vector, pitch is rotation about the
    // Right axis, and roll is rotation about the Direction axis.
    bool ToEulerAnglesXYZ (Real& rfYAngle, Real& rfPAngle,
        Real& rfRAngle) const;
    bool ToEulerAnglesXZY (Real& rfYAngle, Real& rfPAngle,
        Real& rfRAngle) const;
    bool ToEulerAnglesYXZ (Real& rfYAngle, Real& rfPAngle,
        Real& rfRAngle) const;
    bool ToEulerAnglesYZX (Real& rfYAngle, Real& rfPAngle,
        Real& rfRAngle) const;
    bool ToEulerAnglesZXY (Real& rfYAngle, Real& rfPAngle,
        Real& rfRAngle) const;
    bool ToEulerAnglesZYX (Real& rfYAngle, Real& rfPAngle,
        Real& rfRAngle) const;
    void FromEulerAnglesXYZ (Real fYAngle, Real fPAngle, Real fRAngle);
    void FromEulerAnglesXZY (Real fYAngle, Real fPAngle, Real fRAngle);
    void FromEulerAnglesYXZ (Real fYAngle, Real fPAngle, Real fRAngle);
    void FromEulerAnglesYZX (Real fYAngle, Real fPAngle, Real fRAngle);
    void FromEulerAnglesZXY (Real fYAngle, Real fPAngle, Real fRAngle);
    void FromEulerAnglesZYX (Real fYAngle, Real fPAngle, Real fRAngle);

    // SLERP (spherical linear interpolation) without quaternions.  Computes
    // R(t) = R0*(Transpose(R0)*R1)^t.  If Q is a rotation matrix with
    // unit-length axis U and angle A, then Q^t is a rotation matrix with
    // unit-length axis U and rotation angle t*A.
    static Matrix3 Slerp (Real fT, const Matrix3& rkR0, const Matrix3& rkR1);

    // The matrix must be symmetric.  Factor M = R * D * R^T where
    // R = [u0|u1|u2] is a rotation matrix with columns u0, u1, and u2 and
    // D = diag(d0,d1,d2) is a diagonal matrix whose diagonal entries are d0,
    // d1, and d2.  The eigenvector u[i] corresponds to eigenvector d[i].
    // The eigenvalues are ordered as d0 <= d1 <= d2.
    void EigenDecomposition (Matrix3& rkRot, Matrix3& rkDiag) const;

    // Singular value decomposition, M = L*S*R, where L and R are orthogonal
    // and S is a diagonal matrix whose diagonal entries are nonnegative.
    void SingularValueDecomposition (Matrix3& rkL, Matrix3& rkS,
        Matrix3& rkR) const;
    void SingularValueComposition (const Matrix3& rkL, const Matrix3& rkS,
        const Matrix3& rkR);

    // factor M = Q*D*U with orthogonal Q, diagonal D, upper triangular U
    void QDUDecomposition (Matrix3& rkQ, Matrix3& rkD, Matrix3& rkU) const;

    // special matrices
    WML_ITEM static const Matrix3 ZERO;
    WML_ITEM static const Matrix3 IDENTITY;

protected:
    using Matrix<3,Real>::m_afEntry;
    using Matrix<3,Real>::I;

    // support for eigendecomposition
    void Tridiagonalize (Real afDiag[3], Real afSubDiag[3]);
    bool QLAlgorithm (Real afDiag[3], Real afSubDiag[3]);

    // support for singular value decomposition
    static void Bidiagonalize (Matrix3& rkA, Matrix3& rkL, Matrix3& rkR);
    static void GolubKahanStep (Matrix3& rkA, Matrix3& rkL, Matrix3& rkR);
};

#include "WmlMatrix3.inl"

typedef Matrix3<float> Matrix3f;
typedef Matrix3<double> Matrix3d;

}

#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -