📄 wmlvector3.inl
字号:
// Magic Software, Inc.
// http://www.magic-software.com
// http://www.wild-magic.com
// Copyright (c) 2004. All Rights Reserved
//
// The Wild Magic Library (WML) source code is supplied under the terms of
// the license agreement http://www.magic-software.com/License/WildMagic.pdf
// and may not be copied or disclosed except in accordance with the terms of
// that agreement.
//----------------------------------------------------------------------------
template <class Real>
Vector3<Real>::Vector3 ()
{
// the vector is uninitialized
}
//----------------------------------------------------------------------------
template <class Real>
Vector3<Real>::Vector3 (Real fX, Real fY, Real fZ)
{
m_afTuple[0] = fX;
m_afTuple[1] = fY;
m_afTuple[2] = fZ;
}
//----------------------------------------------------------------------------
template <class Real>
Vector3<Real>::Vector3 (const Vector3& rkV)
{
memcpy(m_afTuple,rkV.m_afTuple,3*sizeof(Real));
}
//----------------------------------------------------------------------------
template <class Real>
Vector3<Real>::Vector3 (const Vector<3,Real>& rkV)
{
memcpy(m_afTuple,(const Real*)rkV,3*sizeof(Real));
}
//----------------------------------------------------------------------------
template <class Real>
Vector3<Real>& Vector3<Real>::operator= (const Vector3& rkV)
{
memcpy(m_afTuple,rkV.m_afTuple,3*sizeof(Real));
return *this;
}
//----------------------------------------------------------------------------
template <class Real>
Vector3<Real>& Vector3<Real>::operator= (const Vector<3,Real>& rkV)
{
memcpy(m_afTuple,(const Real*)rkV,3*sizeof(Real));
return *this;
}
//----------------------------------------------------------------------------
template <class Real>
Real Vector3<Real>::X () const
{
return m_afTuple[0];
}
//----------------------------------------------------------------------------
template <class Real>
Real& Vector3<Real>::X ()
{
return m_afTuple[0];
}
//----------------------------------------------------------------------------
template <class Real>
Real Vector3<Real>::Y () const
{
return m_afTuple[1];
}
//----------------------------------------------------------------------------
template <class Real>
Real& Vector3<Real>::Y ()
{
return m_afTuple[1];
}
//----------------------------------------------------------------------------
template <class Real>
Real Vector3<Real>::Z () const
{
return m_afTuple[2];
}
//----------------------------------------------------------------------------
template <class Real>
Real& Vector3<Real>::Z ()
{
return m_afTuple[2];
}
//----------------------------------------------------------------------------
template <class Real>
Vector3<Real> Vector3<Real>::Cross (const Vector3& rkV) const
{
return Vector3(
m_afTuple[1]*rkV.m_afTuple[2] - m_afTuple[2]*rkV.m_afTuple[1],
m_afTuple[2]*rkV.m_afTuple[0] - m_afTuple[0]*rkV.m_afTuple[2],
m_afTuple[0]*rkV.m_afTuple[1] - m_afTuple[1]*rkV.m_afTuple[0]);
}
//----------------------------------------------------------------------------
template <class Real>
Vector3<Real> Vector3<Real>::UnitCross (const Vector3& rkV) const
{
Vector3 kCross(
m_afTuple[1]*rkV.m_afTuple[2] - m_afTuple[2]*rkV.m_afTuple[1],
m_afTuple[2]*rkV.m_afTuple[0] - m_afTuple[0]*rkV.m_afTuple[2],
m_afTuple[0]*rkV.m_afTuple[1] - m_afTuple[1]*rkV.m_afTuple[0]);
kCross.Normalize();
return kCross;
}
//----------------------------------------------------------------------------
template <class Real>
void Vector3<Real>::Orthonormalize (Vector3& rkU, Vector3& rkV, Vector3& rkW)
{
// If the input vectors are v0, v1, and v2, then the Gram-Schmidt
// orthonormalization produces vectors u0, u1, and u2 as follows,
//
// u0 = v0/|v0|
// u1 = (v1-(u0*v1)u0)/|v1-(u0*v1)u0|
// u2 = (v2-(u0*v2)u0-(u1*v2)u1)/|v2-(u0*v2)u0-(u1*v2)u1|
//
// where |A| indicates length of vector A and A*B indicates dot
// product of vectors A and B.
// compute u0
rkU.Normalize();
// compute u1
Real fDot0 = rkU.Dot(rkV);
rkV -= fDot0*rkU;
rkV.Normalize();
// compute u2
Real fDot1 = rkV.Dot(rkW);
fDot0 = rkU.Dot(rkW);
rkW -= fDot0*rkU + fDot1*rkV;
rkW.Normalize();
}
//----------------------------------------------------------------------------
template <class Real>
void Vector3<Real>::Orthonormalize (Vector3 akV[/*3*/])
{
Orthonormalize(akV[0],akV[1],akV[2]);
}
//----------------------------------------------------------------------------
template <class Real>
void Vector3<Real>::GenerateOrthonormalBasis (Vector3& rkU, Vector3& rkV,
Vector3& rkW, bool bUnitLengthW)
{
if ( !bUnitLengthW )
rkW.Normalize();
Real fInvLength;
if ( Math<Real>::FAbs(rkW.m_afTuple[0]) >=
Math<Real>::FAbs(rkW.m_afTuple[1]) )
{
// W.x or W.z is the largest magnitude component, swap them
fInvLength = Math<Real>::InvSqrt(rkW.m_afTuple[0]*rkW.m_afTuple[0] +
rkW.m_afTuple[2]*rkW.m_afTuple[2]);
rkU.m_afTuple[0] = -rkW.m_afTuple[2]*fInvLength;
rkU.m_afTuple[1] = (Real)0.0;
rkU.m_afTuple[2] = +rkW.m_afTuple[0]*fInvLength;
}
else
{
// W.y or W.z is the largest magnitude component, swap them
fInvLength = Math<Real>::InvSqrt(rkW.m_afTuple[1]*rkW.m_afTuple[1] +
rkW.m_afTuple[2]*rkW.m_afTuple[2]);
rkU.m_afTuple[0] = (Real)0.0;
rkU.m_afTuple[1] = +rkW.m_afTuple[2]*fInvLength;
rkU.m_afTuple[2] = -rkW.m_afTuple[1]*fInvLength;
}
rkV = rkW.Cross(rkU);
}
//----------------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -