⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 wmlmatrix2.inl

📁 Wild Math Library数值计算库
💻 INL
字号:
// Magic Software, Inc.
// http://www.magic-software.com
// http://www.wild-magic.com
// Copyright (c) 2004.  All Rights Reserved
//
// The Wild Magic Library (WML) source code is supplied under the terms of
// the license agreement http://www.magic-software.com/License/WildMagic.pdf
// and may not be copied or disclosed except in accordance with the terms of
// that agreement.

//----------------------------------------------------------------------------
template <class Real>
Matrix2<Real>::Matrix2 ()
{
    // the matrix is uninitialized
}
//----------------------------------------------------------------------------
template <class Real>
Matrix2<Real>::Matrix2 (const Matrix2& rkM)
{
    memcpy(m_afEntry,rkM.m_afEntry,4*sizeof(Real));
}
//----------------------------------------------------------------------------
template <class Real>
Matrix2<Real>::Matrix2 (const Matrix<2,Real>& rkM)
{
    memcpy(m_afEntry,(const Real*)rkM,4*sizeof(Real));
}
//----------------------------------------------------------------------------
template <class Real>
Matrix2<Real>::Matrix2 (Real fM00, Real fM01, Real fM10, Real fM11)
{
    m_afEntry[0] = fM00;
    m_afEntry[1] = fM01;
    m_afEntry[2] = fM10;
    m_afEntry[3] = fM11;
}
//----------------------------------------------------------------------------
template <class Real>
Matrix2<Real>::Matrix2 (const Real afEntry[4], bool bRowMajor)
{
    if ( bRowMajor )
    {
        memcpy(m_afEntry,afEntry,4*sizeof(Real));
    }
    else
    {
        m_afEntry[0] = afEntry[0];
        m_afEntry[1] = afEntry[2];
        m_afEntry[2] = afEntry[1];
        m_afEntry[3] = afEntry[3];
    }
}
//----------------------------------------------------------------------------
template <class Real>
Matrix2<Real>::Matrix2 (const Vector2<Real>& rkU,
    const Vector2<Real>& rkV, bool bColumns)
{
    if ( bColumns )
    {
        m_afEntry[0] = rkU[0];
        m_afEntry[1] = rkV[0];
        m_afEntry[2] = rkU[1];
        m_afEntry[3] = rkV[1];
    }
    else
    {
        m_afEntry[0] = rkU[0];
        m_afEntry[1] = rkU[1];
        m_afEntry[2] = rkV[0];
        m_afEntry[3] = rkV[1];
    }
}
//----------------------------------------------------------------------------
template <class Real>
Matrix2<Real>::Matrix2 (const Vector2<Real>* akV, bool bColumns)
{
    if ( bColumns )
    {
        m_afEntry[0] = akV[0][0];
        m_afEntry[1] = akV[1][0];
        m_afEntry[2] = akV[0][1];
        m_afEntry[3] = akV[1][1];
    }
    else
    {
        m_afEntry[0] = akV[0][0];
        m_afEntry[1] = akV[0][1];
        m_afEntry[2] = akV[1][0];
        m_afEntry[3] = akV[1][1];
    }
}
//----------------------------------------------------------------------------
template <class Real>
Matrix2<Real>::Matrix2 (const Vector2<Real>& rkU,
    const Vector2<Real>& rkV)
{
    MakeTensorProduct(rkU,rkV);
}
//----------------------------------------------------------------------------
template <class Real>
void Matrix2<Real>::MakeTensorProduct (const Vector2<Real>& rkU,
    const Vector2<Real>& rkV)
{
    m_afEntry[0] = rkU[0]*rkV[0];
    m_afEntry[1] = rkU[0]*rkV[1];
    m_afEntry[2] = rkU[1]*rkV[0];
    m_afEntry[3] = rkU[1]*rkV[1];
}
//----------------------------------------------------------------------------
template <class Real>
Matrix2<Real>::Matrix2 (Real fM00, Real fM11)
{
    MakeDiagonal(fM00,fM11);
}
//----------------------------------------------------------------------------
template <class Real>
void Matrix2<Real>::MakeDiagonal (Real fM00, Real fM11)
{
    m_afEntry[0] = fM00;
    m_afEntry[1] = (Real)0.0;
    m_afEntry[2] = (Real)0.0;
    m_afEntry[3] = fM11;
}
//----------------------------------------------------------------------------
template <class Real>
Matrix2<Real>::Matrix2 (Real fAngle)
{
    FromAngle(fAngle);
}
//----------------------------------------------------------------------------
template <class Real>
void Matrix2<Real>::FromAngle (Real fAngle)
{
    m_afEntry[0] = Math<Real>::Cos(fAngle);
    m_afEntry[2] = Math<Real>::Sin(fAngle);
    m_afEntry[1] = -m_afEntry[2];
    m_afEntry[3] =  m_afEntry[0];
}
//----------------------------------------------------------------------------
template <class Real>
Matrix2<Real>& Matrix2<Real>::operator= (const Matrix2& rkM)
{
    memcpy(m_afEntry,rkM.m_afEntry,4*sizeof(Real));
    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
Matrix2<Real>& Matrix2<Real>::operator= (const Matrix<2,Real>& rkM)
{
    memcpy(m_afEntry,(const Real*)rkM,4*sizeof(Real));
    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
Matrix2<Real> Matrix2<Real>::Inverse () const
{
    Matrix2<Real> kInverse;

    Real fDet = m_afEntry[0]*m_afEntry[3] - m_afEntry[1]*m_afEntry[2];
    if ( Math<Real>::FAbs(fDet) > Math<Real>::EPSILON )
    {
        Real fInvDet = ((Real)1.0)/fDet;
        kInverse[0][0] =  m_afEntry[3]*fInvDet;
        kInverse[0][1] = -m_afEntry[1]*fInvDet;
        kInverse[1][0] = -m_afEntry[2]*fInvDet;
        kInverse[1][1] =  m_afEntry[0]*fInvDet;
    }
    else
    {
        kInverse.MakeZero();
    }

    return kInverse;
}
//----------------------------------------------------------------------------
template <class Real>
Matrix2<Real> Matrix2<Real>::Adjoint () const
{
    return Matrix2<Real>(
         m_afEntry[3],-m_afEntry[1],
        -m_afEntry[2], m_afEntry[0]);
}
//----------------------------------------------------------------------------
template <class Real>
Real Matrix2<Real>::Determinant () const
{
    return m_afEntry[0]*m_afEntry[3] - m_afEntry[1]*m_afEntry[2];
}
//----------------------------------------------------------------------------
template <class Real>
void Matrix2<Real>::ToAngle (Real& rfAngle) const
{
    // assert:  matrix is a rotation
    rfAngle = Math<Real>::ATan2(m_afEntry[2],m_afEntry[0]);
}
//----------------------------------------------------------------------------
template <class Real>
void Matrix2<Real>::Orthonormalize ()
{
    // Algorithm uses Gram-Schmidt orthogonalization.  If 'this' matrix is
    // M = [m0|m1], then orthonormal output matrix is Q = [q0|q1],
    //
    //   q0 = m0/|m0|
    //   q1 = (m1-(q0*m1)q0)/|m1-(q0*m1)q0|
    //
    // where |V| indicates length of vector V and A*B indicates dot
    // product of vectors A and B.

    // compute q0
    Real fInvLength = Math<Real>::InvSqrt(m_afEntry[0]*m_afEntry[0] +
        m_afEntry[2]*m_afEntry[2]);

    m_afEntry[0] *= fInvLength;
    m_afEntry[2] *= fInvLength;

    // compute q1
    Real fDot0 = m_afEntry[0]*m_afEntry[1] + m_afEntry[2]*m_afEntry[3];
    m_afEntry[1] -= fDot0*m_afEntry[0];
    m_afEntry[3] -= fDot0*m_afEntry[2];

    fInvLength = Math<Real>::InvSqrt(m_afEntry[1]*m_afEntry[1] +
        m_afEntry[3]*m_afEntry[3]);

    m_afEntry[1] *= fInvLength;
    m_afEntry[3] *= fInvLength;
}
//----------------------------------------------------------------------------
template <class Real>
void Matrix2<Real>::EigenDecomposition (Matrix2& rkRot, Matrix2& rkDiag) const
{
    Real fTrace = m_afEntry[0] + m_afEntry[3];
    Real fDiff = m_afEntry[0] - m_afEntry[3];
    Real fDiscr = Math<Real>::Sqrt(fDiff*fDiff +
        ((Real)4.0)*m_afEntry[1]*m_afEntry[1]);
    Real fEVal0 = ((Real)0.5)*(fTrace-fDiscr);
    Real fEVal1 = ((Real)0.5)*(fTrace+fDiscr);
    rkDiag.MakeDiagonal(fEVal0,fEVal1);

    Vector2<Real> kRow0(m_afEntry[0]-fEVal0,m_afEntry[1]);
    Vector2<Real> kRow1(m_afEntry[1],m_afEntry[3]-fEVal0);
    Real fLength0 = kRow0.Length();
    Real fLength1 = kRow1.Length();

    if ( fLength0 > fLength1 )
    {
        if ( fLength0 > Math<Real>::EPSILON )
        {
            rkRot.m_afEntry[0] = kRow0[1];
            rkRot.m_afEntry[1] = kRow0[0];
            rkRot.m_afEntry[2] = -kRow0[0];
            rkRot.m_afEntry[3] = kRow0[1];
        }
        else
        {
            rkRot.MakeIdentity();
        }
    }
    else
    {
        if ( fLength1 > Math<Real>::EPSILON )
        {
            rkRot.m_afEntry[0] = kRow1[1];
            rkRot.m_afEntry[1] = kRow1[0];
            rkRot.m_afEntry[2] = -kRow1[0];
            rkRot.m_afEntry[3] = kRow1[1];
        }
        else
        {
            rkRot.MakeIdentity();
        }
    }
}
//----------------------------------------------------------------------------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -