⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fmincopf.m

📁 电力系统计算软件
💻 M
📖 第 1 页 / 共 2 页
字号:
function [busout, genout, branchout, f, success, info, et, g, jac] = ...      fmincopf(baseMVA, bus, gen, branch, areas, gencost, Au, lbu, ubu, mpopt, ...           N, fparm, H, Cw)%FMINCOPF  Solves an AC optimal power flow using FMINCON (Opt Tbx 2.x & later).%%   [bus, gen, branch, f, success] = fmincopf(casefile, mpopt)%%   [bus, gen, branch, f, success] = fmincopf(casefile, A, l, u, mpopt)%%   [bus, gen, branch, f, success] = fmincopf(baseMVA, bus, gen, branch, ...%                                    areas, gencost, mpopt)%%   [bus, gen, branch, f, success] = fmincopf(baseMVA, bus, gen, branch, ...%                                    areas, gencost, A, l, u, mpopt)%%   [bus, gen, branch, f, success] = fmincopf(baseMVA, bus, gen, branch, ...%                                    areas, gencost, A, l, u, mpopt, ...%                                    N, fparm, H, Cw)%%   [bus, gen, branch, f, success, info, et, g, jac] = fmincopf(casefile)%%   The data for the problem can be specified in one of 3 ways: (1) the name of%   a case file which defines the data matrices baseMVA, bus, gen, branch,%   areas and gencost, (2) a struct containing the data matrices as fields, or%   (3) the data matrices themselves.%%   When specified, A, l, u represent additional linear constraints on the%   optimization variables, l <= A*[x; z] <= u. For an explanation of the%   formulation used and instructions for forming the A matrix, type%   'help genform'.%%   A generalized cost on all variables can be applied if input arguments%   N, fparm, H and Cw are specified.  First, a linear transformation%   of the optimization variables is defined by means of r = N * [x; z].%   Then, to each element of r a function is applied as encoded in the%   fparm matrix (see manual or type 'help generalcost').  If the%   resulting vector is now named w, then H and Cw define a quadratic%   cost on w:  (1/2)*w'*H*w + Cw * w . H and N should be sparse matrices%   and H should also be symmetric.%%   The optional mpopt vector specifies MATPOWER options. Type 'help mpoption'%   for details and default values.%%   The solved case is returned in the data matrices, bus, gen and branch. Also%   returned are the final objective function value (f) and a flag which is%   true if the algorithm was successful in finding a solution (success).%   Additional optional return values are an algorithm specific return status%   (info), elapsed time in seconds (et), the constraint vector (g) and the%   Jacobian matrix (jac).%%   Rules for A matrix: If the user specifies an A matrix that has more columns%   than the number of "x" (OPF) variables, then there are extra linearly%   constrained "z" variables.%%   NOTE: The shadow prices (lambda's and mu's) produced by fmincon appear to%         be slightly inaccurate.%   MATPOWER%   $Id: fmincopf.m,v 1.14 2006/07/28 20:41:24 ray Exp $%   by Carlos E. Murillo-Sanchez, PSERC Cornell & Universidad Autonoma de Manizales%   Copyright (c) 2000-2006 by Power System Engineering Research Center (PSERC)%   See http://www.pserc.cornell.edu/matpower/ for more info.% Sort out input argumentst1 = clock;if isstr(baseMVA) | isstruct(baseMVA)   % passing filename or struct  % 14  fmincopf(baseMVA,  bus, gen, branch, areas, gencost, Au,    lbu, ubu, mpopt, N, fparm, H, Cw)  % 9   fmincopf(casefile, Au,  lbu, ubu,    mpopt, N,       fparm, H,   Cw)  % 5   fmincopf(casefile, Au,  lbu, ubu,    mpopt)  % 4   fmincopf(casefile, Au,  lbu, ubu)  % 2   fmincopf(casefile, mpopt)  % 1   fmincopf(casefile)  if any(nargin == [1, 2, 4, 5, 9])    casefile = baseMVA;    if nargin == 9      N     = gencost;      fparm = Au;      H     = lbu;      Cw    = ubu;    else      N     = [];      fparm = [];      H     = [];      Cw    = [];    end    if nargin < 4      Au  = sparse(0,0);      lbu = [];      ubu = [];    else      Au  = bus;      lbu = gen;      ubu = branch;    end    if nargin == 9 | nargin == 5      mpopt = areas;    elseif nargin == 2      mpopt = bus;    else      mpopt = [];    end  else    error('fmincopf.m: Incorrect input parameter order, number or type');  end  [baseMVA, bus, gen, branch, areas, gencost] = loadcase(casefile);else    % passing individual data matrices  % 14  fmincopf(baseMVA,  bus, gen, branch, areas, gencost, Au,    lbu, ubu, mpopt, N, fparm, H, Cw)  % 10  fmincopf(baseMVA,  bus, gen, branch, areas, gencost, Au,    lbu, ubu, mpopt)  % 9   fmincopf(baseMVA,  bus, gen, branch, areas, gencost, Au,    lbu, ubu)  % 7   fmincopf(baseMVA,  bus, gen, branch, areas, gencost, mpopt)  % 6   fmincopf(baseMVA,  bus, gen, branch, areas, gencost)  if any(nargin == [6, 7, 9, 10, 14])    if nargin ~= 14      N     = [];      fparm = [];      H     = [];      Cw    = [];    end    if nargin == 7      mpopt = Au;    elseif nargin == 6 | nargin == 9      mpopt = [];    end    if nargin < 9      Au  = sparse(0,0);      lbu = [];      ubu = [];    end  else    error('fmincopf.m: Incorrect input parameter order, number or type');  endendif size(N, 1) > 0  if size(N, 1) ~= size(fparm, 1) | size(N, 1) ~= size(H, 1) | ...     size(N, 1) ~= size(H, 2) | size(N, 1) ~= length(Cw)    error('fmincopf.m: wrong dimensions in generalized cost parameters');  end  if size(Au, 1) > 0 & size(N, 2) ~= size(Au, 2)    error('fmincopf.m: A and N must have the same number of columns');  endendif isempty(mpopt)  mpopt = mpoption;end% Load column indexes for case tables.[PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ...    VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus;[GEN_BUS, PG, QG, QMAX, QMIN, VG, MBASE, GEN_STATUS, PMAX, PMIN, ...    MU_PMAX, MU_PMIN, MU_QMAX, MU_QMIN, PC1, PC2, QC1MIN, QC1MAX, ...    QC2MIN, QC2MAX, RAMP_AGC, RAMP_10, RAMP_30, RAMP_Q, APF] = idx_gen;[F_BUS, T_BUS, BR_R, BR_X, BR_B, RATE_A, RATE_B, RATE_C, ...    TAP, SHIFT, BR_STATUS, PF, QF, PT, QT, MU_SF, MU_ST, ...    ANGMIN, ANGMAX, MU_ANGMIN, MU_ANGMAX] = idx_brch;[PW_LINEAR, POLYNOMIAL, MODEL, STARTUP, SHUTDOWN, NCOST, COST] = idx_cost;% If tables do not have multiplier/extra columns, append zero cols.% Update whenever the data format changes!if size(bus,2) < MU_VMIN  bus = [bus zeros(size(bus,1),MU_VMIN-size(bus,2)) ];endif size(gen,2) < MU_QMIN  gen = [ gen zeros(size(gen,1),MU_QMIN-size(gen,2)) ];endif size(branch,2) < MU_ANGMAX  branch = [ branch zeros(size(branch,1),MU_ANGMAX-size(branch,2)) ];end% Filter out inactive generators and branches; save original bus & branchcomgen = find(gen(:,GEN_STATUS) > 0);offgen = find(gen(:,GEN_STATUS) <= 0);onbranch  = find(branch(:,BR_STATUS) ~= 0);offbranch = find(branch(:,BR_STATUS) == 0);genorg = gen;branchorg = branch;ng = size(gen,1);         % original size(gen), at least temporallygen   = gen(comgen, :);branch = branch(onbranch, :);if size(gencost,1) == ng  gencost = gencost(comgen, :);else  gencost = gencost( [comgen; comgen+ng], :);end% Renumber buses consecutively[i2e, bus, gen, branch, areas] = ext2int(bus, gen, branch, areas);[ref, pv, pq] = bustypes(bus, gen);% Sort generators in order of increasing bus number;ng = size(gen,1);[tmp, igen] = sort(gen(:, GEN_BUS));[tmp, inv_gen_ord] = sort(igen);  % save for inverse reordering at the endgen  = gen(igen, :);if ng == size(gencost,1)  gencost = gencost(igen, :);else  gencost = gencost( [igen; igen+ng], :);end% Print a warning if there is more than one reference busif size(find(bus(:, BUS_TYPE) == REF), 1) > 1  errstr = ['\nfmincopf: Warning: more than one reference bus detected in bus table data.\n', ...              '      For a system with islands, a reference bus in each island\n', ...              '      might help convergence but in a fully connected system such\n', ...              '      a situation is probably not reasonable.\n\n' ];  fprintf(errstr);end% Find out if any of these "generators" are actually dispatchable loads.% (see 'help isload' for details on what constitutes a dispatchable load)% Dispatchable loads are modeled as generators with an added constant% power factor constraint. The power factor is derived from the original% value of Pmin and either Qmin (for inductive loads) or Qmax (for capacitive% loads). If both Qmin and Qmax are zero, this implies a unity power factor% without the need for an additional constraint.vload = find( isload(gen) & (gen(:, QMIN) ~= 0 | gen(:, QMAX) ~= 0) );% At least one of the Q limits must be zero (corresponding to Pmax == 0)if any( gen(vload, QMIN) ~= 0 & gen(vload, QMAX) ~= 0 )    error('fmincopf.m: Either Qmin or Qmax must be equal to zero for each dispatchable load.');end% Initial values of PG and QG must be consistent with specified power factor% This is to prevent a user from unknowingly using a case file which would% have defined a different power factor constraint under a previous version% which used PG and QG to define the power factor.Qlim = (gen(vload, QMIN) == 0) .* gen(vload, QMAX) + ...    (gen(vload, QMAX) == 0) .* gen(vload, QMIN);if any( abs( gen(vload, QG) - gen(vload, PG) .* Qlim ./ gen(vload, PMIN) ) > 1e-4 )    errstr = sprintf('%s\n', ...        'For a dispatchable load, PG and QG must be consistent', ...        'with the power factor defined by PMIN and the Q limits.' );    error(errstr);end% Find out which generators require additional linear constraints% (as opposed to simple box constraints) on (Pg,Qg) to correctly% model their PQ capability curvesipqh = find( hasPQcap(gen, 'U') );ipql = find( hasPQcap(gen, 'L') );% Find out problem dimensionsnb = size(bus, 1);                              % busesng = size(gen, 1);                              % variable injectionsnl = size(branch, 1);                           % branchesiycost = find(gencost(:, MODEL) == PW_LINEAR);  % y variables for pwl costny    = size(iycost, 1);neqc  = 2 * nb;                                 % nonlinear equalitiesnusr  = size(Au, 1);                            % # linear user constraintsnx    = 2*nb + 2*ng;                            % control variablesnvl   = size(vload, 1);                         % dispatchable loadsnpqh  = size(ipqh, 1);                          % general pq capability curvesnpql  = size(ipql, 1);if isempty(Au)  nz = 0;  Au = sparse(0,nx);  if ~isempty(N)        % still need to check number of columns of N    if size(N,2) ~= nx;      error(sprintf('fmincopf.m: user supplied N matrix must have %d columns.', nx));    end  endelse  nz = size(Au,2) - nx;                       % additional linear variables  if nz < 0    error(sprintf('fmincopf.m: user supplied A matrix must have at least %d columns.', nx));  endendnxyz = nx+ny+nz;                                % total # of vars of all types% Definition of indexes into optimization variable vector and constraint% vector.thbas = 1;                thend    = thbas+nb-1;vbas     = thend+1;       vend     = vbas+nb-1;pgbas    = vend+1;        pgend    = pgbas+ng-1;qgbas    = pgend+1;       qgend    = qgbas+ng-1;ybas     = qgend + 1;     yend     = ybas + ny - 1;zbas     = yend + 1;      zend     = zbas + nz - 1;pmsmbas = 1;              pmsmend = pmsmbas+nb-1;qmsmbas = pmsmend+1;      qmsmend = qmsmbas+nb-1;sfbas   = qmsmend+1;      sfend   = sfbas+nl-1;stbas   = sfend+1;        stend   = stbas+nl-1;usrbas  = stend+1;        usrend  = usrbas+nusr-1; % warning: nusr could be 0pqhbas  = usrend+1;       pqhend  = pqhbas+npqh-1; % warning: npqh could be 0pqlbas  = pqhend+1;       pqlend  = pqlbas+npql-1; % warning: npql could be 0vlbas   = pqlend+1;       vlend   = vlbas+nvl-1; % not done yet, need # of                                                 % Ay constraints.% Let makeAy deal with any y-variable for piecewise-linear convex costs.% note that if there are z variables then Ay doesn't have the columns% that would span the z variables, so we append them.if ny > 0  [Ay, by]  = makeAy(baseMVA, ng, gencost, pgbas, qgbas, ybas);  if nz > 0    Ay = [ Ay  sparse(size(Ay,1), nz) ];  endelse  Ay = [];  by =[];endncony = size(Ay,1);yconbas = vlend+1;        yconend = yconbas+ncony-1; % finally done with                                                     % constraint indexing% Make Avl, lvl, uvl in case there is a need for dispatchable loadsif nvl > 0  xx = gen(vload, PMIN);  yy = Qlim;  pftheta = atan2(yy, xx);  pc = sin(pftheta);  qc = -cos(pftheta);  ii = [ (1:nvl)'; (1:nvl)' ];  jj = [ pgbas+vload-1; qgbas+vload-1 ];  Avl = sparse(ii, jj, [pc; qc], nvl, nxyz);  lvl = zeros(nvl, 1);  uvl = lvl;else  Avl =[];  lvl =[];  uvl =[];end% Make Apqh if there is a need to add general PQ capability curves;% use normalized coefficient rows so multipliers have right scaling% in $$/puif npqh > 0  Apqhdata = [gen(ipqh,QC1MAX)-gen(ipqh,QC2MAX), gen(ipqh,PC2)-gen(ipqh,PC1)];  ubpqh = (gen(ipqh,QC1MAX)-gen(ipqh,QC2MAX)) .* gen(ipqh,PC1) ...         + (gen(ipqh,PC2)-gen(ipqh,PC1)) .* gen(ipqh,QC1MAX);  for i=1:npqh,    tmp = norm(Apqhdata(i,:));    Apqhdata(i,:) = Apqhdata(i, :) / tmp;    ubpqh(i) = ubpqh(i) / tmp;  end  Apqh = sparse([1:npqh, 1:npqh]', [(pgbas-1)+ipqh;(qgbas-1)+ipqh], ...                Apqhdata(:), npqh, nxyz);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -