⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vector3.hh

📁 2007年机器人足球世界杯3D仿真组亚军
💻 HH
字号:
/* *  Little Green BATS (2006) * *  Authors: 	Martin Klomp (martin@ai.rug.nl) *		Mart van de Sanden (vdsanden@ai.rug.nl) *		Sander van Dijk (sgdijk@ai.rug.nl) *		A. Bram Neijt (bneijt@gmail.com) *		Matthijs Platje (mplatje@gmail.com) * *  Date: 	September 14, 2006 * *  Website:	http://www.littlegreenbats.nl * *  Comment:	Please feel free to contact us if you have any  *		problems or questions about the code. * * *  License: 	This program is free software; you can redistribute  *		it and/or modify it under the terms of the GNU General *		Public License as published by the Free Software  *		Foundation; either version 2 of the License, or (at  *		your option) any later version. * *   		This program is distributed in the hope that it will *		be useful, but WITHOUT ANY WARRANTY; without even the *		implied warranty of MERCHANTABILITY or FITNESS FOR A *		PARTICULAR PURPOSE.  See the GNU General Public *		License for more details. * *   		You should have received a copy of the GNU General *		Public License along with this program; if not, write *		to the Free Software Foundation, Inc., 59 Temple Place -  *		Suite 330, Boston, MA  02111-1307, USA. * */#ifndef __INC_BATS_VECTOR3_HH_#define __INC_BATS_VECTOR3_HH_#include <cstring>#include <cassert>#include <ostream>#include <cmath>namespace bats {  template <class T>  class Matrix9;  /** \brief 3 element vector   *   *  The Vector3 class is a three dimensional vector class (3 values).   */  template <class T>  class Vector3  {    template <class K> friend std::ostream &operator<<(std::ostream &, Vector3<K> const &);    friend class Matrix9<T>;    T d_values[3];    void destroy()    {    }    void copy(Vector3<T> const &other)    {      memcpy(reinterpret_cast<char*>(d_values),	     reinterpret_cast<char const *>(other.d_values),	     sizeof(T)*3);    }    Vector3(double values[])    {      memcpy(reinterpret_cast<char*>(d_values),	     reinterpret_cast<char const *>(values),	     sizeof(T)*3);    }      public:    Vector3(Vector3<T> const &other) { copy(other); }    /**     *  A vector initalizes to zero.     */    Vector3() { d_values[0] = d_values[1] = d_values[2] = 0; }    /**     *  Initializes the vector to (x,y,z).     */    Vector3(T x, T y, T z)    {      d_values[0] = x;      d_values[1] = y;      d_values[2] = z;    }    ~Vector3() { destroy(); }    /**     *  @returns a pointer to the array of values.     */    T const *ptr() const { return d_values; }    /**     *  @returns a pointer to the array of values. This is an auto     *           conversion function and makes it posible to     *           use the vector in places where you normaly would     *           have used a array of 3 values.     */    operator T /*const*/ *() /*const*/ { return d_values; }    Vector3 &operator=(Vector3 const &other)    {      if (this != &other) {        destroy();        copy(other);      }      return *this;    }    /*T &operator[](unsigned index)    {      assert(index < 3);      return d_values[index];    }*/    /** Set member \a idx to \a value */    void set(unsigned idx, T value) { d_values[idx] = value; }        /** Set X-coordinate to \a value */    void setX(T value) { d_values[0] = value; }    /** Set Y-coordinate to \a value */    void setY(T value) { d_values[1] = value; }    /** Set Z-coordinate to \a value */    void setZ(T value) { d_values[2] = value; }        /** Get member \a idx */    T get(unsigned idx) const    {      assert(idx < 3);      return d_values[idx];    }    /** Get X-coordinate */    T getX() const{ return d_values[0]; }    /** Get Y-coordinate */    T getY() const { return d_values[1]; }    /** Get Z-coordinate */    T getZ() const { return d_values[2]; }    /** Calculate vector length     *     * \f$ |\vec V| = \sqrt{X^2 + Y^2 + Z^2} \f$     */    T length() const    {      return sqrt(d_values[0]*d_values[0] +		  d_values[1]*d_values[1] + 		  d_values[2]*d_values[2]);    }    /**     *  @returns a normalized vector. A vector is normalized when its euclidian length is one.     */    Vector3<T> normalize() const    {      return (*this)/length();    }    /** Calculate the cross product of this vector with another vector     *     * \f$ \vec c = \vec a \times \vec b \f$ <BR>     * \f$ c_0 = a_1 \cdot b_2 - a_2 \cdot a_1 \f$ <BR>     * \f$ c_1 = a_2 \cdot b_0 - a_0 \cdot a_2 \f$ <BR>     * \f$ c_2 = a_3 \cdot b_1 - a_1 \cdot a_0 \f$      */    Vector3<T> crossProduct(Vector3<T> const &other) const    {      Vector3<T> res(        (d_values[1] * other.d_values[2] - d_values[2] * other.d_values[1]),        (d_values[2] * other.d_values[0] - d_values[0] * other.d_values[2]),        (d_values[0] * other.d_values[1] - d_values[1] * other.d_values[0])      );      return res;    }    /** Calculate the dot product of this vector with another vector     *     * \f$ \vec c = \vec a \cdot \vec b \f$ <BR>     * \f$ c_i = a_i \cdot b_i \f$     */    T dotProduct(Vector3<T> const &other) const    {      return (d_values[0]*other.d_values[0] +	      d_values[1]*other.d_values[1] +	      d_values[2]*other.d_values[2]);    }    /**     *  Performs a dot (or inner) product.     */    T operator*(Vector3<T> const &other) const    {      return dotProduct(other);    }        /** Add another vector to this vector*/    Vector3<T> operator+(Vector3 const &other) const    {      Vector3<T> res(        d_values[0] + other.d_values[0],        d_values[1] + other.d_values[1],        d_values[2] + other.d_values[2]      );      return res;    }    /** Subtract another vector from this vector */    Vector3<T> operator-(Vector3 const &other) const    {      Vector3<T> res(        d_values[0] - other.d_values[0],        d_values[1] - other.d_values[1],        d_values[2] - other.d_values[2]      );      return res;    }    /** Multiply this vector with a scalar value */    Vector3<T> operator*(T value) const    {      Vector3<T> res(        d_values[0] * value,        d_values[1] * value,        d_values[2] * value      );      return res;    }    /** Divide this vector by a scalar value */    Vector3<T> operator/(T value) const    {      Vector3<T> res(        d_values[0] / value,        d_values[1] / value,        d_values[2] / value      );      return res;    }    /**     *  @returns the negative version of the vector.     */    Vector3<T> operator-()    {      Vector3<T> res(        -d_values[0],        -d_values[1],        -d_values[2]      );      return res;    }    /**     *  Adds other to this one.     */    Vector3<T> &operator+=(Vector3 const &other)    {      d_values[0] += other.d_values[0];      d_values[1] += other.d_values[1];      d_values[2] += other.d_values[2];      return *this;    }    /**     *  Substracts other from this one.     */    Vector3<T> &operator-=(Vector3 const &other)    {      d_values[0] -= other.d_values[0];      d_values[1] -= other.d_values[1];      d_values[2] -= other.d_values[2];      return *this;    }    /** Divide this vector by a scalar value */    Vector3<T> &operator/=(T value)    {      d_values[0] /= value;      d_values[1] /= value;      d_values[2] /= value;      return *this;    }    /** Multiply this vector by a scalar value */    Vector3<T> &operator*=(T value)    {      d_values[0] *= value;      d_values[1] *= value;      d_values[2] *= value;      return *this;    }    /** Compare this vector to another vector */    bool operator==(Vector3 const &other) const    {      return d_values[0] == other.d_values[0] &&             d_values[1] == other.d_values[1] &&             d_values[2] == other.d_values[2];    }        bool operator!=(Vector3 const &other) const    {      return !(*this == other);    }    bool operator<(Vector3 const& other) const    {      return length() < other.length();    }        /** Calculate angle between this vector and another vector     *     * \f$ cos(\alpha) = {{\vec a \cdot \vec b} \over {| \vec a | | \vec b | }}\f$ <BR>     *     */    double angle(Vector3 &other) const    {      double dp = dotProduct(other);      return acos(dp / (length() * other.length()));    }    /**     *  Rotates the vector around the Z-ax by an angle of angle.     *     *  Might not be used anymore.     */    Vector3<T> rotateZ(double angle)    {      Matrix9<T> rotMat;      rotMat.set(0,0, cos(angle));      rotMat.set(0,1, sin(angle));      rotMat.set(1,0, -sin(angle));      rotMat.set(1,1, cos(angle));      rotMat.set(2, 2, 1.0);      Vector3<T> res;      Matrix9<T>::mul(res, rotMat, *this);      return res;    }    /**     *  @returns false is one of the values is NaN.     */    bool isValid()    {    	return !std::isnan(d_values[0]) && !std::isnan(d_values[1]) && !std::isnan(d_values[2]);    }  };  /**   *  A vector of doubles.   */  typedef Vector3<double> Vector3D;  /**   *  A vector of floats.   */  typedef Vector3<float>  Vector3F;  template <class K>  std::ostream &operator<<(std::ostream &_os, Vector3<K> const &_vect)  {    return _os << "(" << _vect.d_values[0] << "," << _vect.d_values[1] << "," << _vect.d_values[2] << ")";  }};#endif // __INC_BATS_VECTOR3_HH_

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -