📄 soxexam.txt
字号:
The sample will be bounced twice in asymmetric echos: play file.xxx echos 0.8 0.7 700.0 0.25 900.0 0.3 The sample will sound as if played in a garage: play file.xxx echos 0.8 0.7 40.0 0.25 63.0 0.3 Chorus The chorus effect has its name because it will often be used to make a single vocal sound like a chorus. But it can be applied to other instrument samples too. It works like the echo effect with a short delay, but the delay isn’t constant. The delay is varied using a sinusoidal or triangular modula- tion. The modulation depth defines the range the modulated delay is played before or after the delay. Hence the delayed sound will sound slower or faster, that is the delayed sound tuned around the original one, like in a chorus where some vocals are a bit out of tune. The typical delay is around 40ms to 60ms, the speed of the modulation is best near 0.25Hz and the modulation depth around 2ms. A single delay will make the sample more overloaded: play file.xxx chorus 0.7 0.9 55.0 0.4 0.25 2.0 -t Two delays of the original samples sound like this: play file.xxx chorus 0.6 0.9 50.0 0.4 0.25 2.0 -t 60.0 0.32 0.4 1.3 -s A big chorus of the sample is (three additional samples): play file.xxx chorus 0.5 0.9 50.0 0.4 0.25 2.0 -t 60.0 0.32 0.4 2.3 -t 40.0 0.3 0.3 1.3 -s Flanger The flanger effect is like the chorus effect, but the delay varies between 0ms and maximal 5ms. It sound like wind blowing, sometimes faster or slower including changes of the speed. The flanger effect is widely used in funk and soul music, where the guitar sound varies frequently slow or a bit faster. The typical delay is around 3ms to 5ms, the speed of the modulation is best near 0.5Hz. Now, let’s groove the sample: play file.xxx flanger 0.6 0.87 3.0 0.9 0.5 -s listen carefully between the difference of sinusoidal and triangular modulation: play file.xxx flanger 0.6 0.87 3.0 0.9 0.5 -t If the decay is a bit lower, than the effect sounds more popular: play file.xxx flanger 0.8 0.88 3.0 0.4 0.5 -t The drunken loudspeaker system: play file.xxx flanger 0.9 0.9 4.0 0.23 1.3 -s Reverb The reverb effect is often used in audience hall which are to small or contain too many many visitors which disturb (dampen) the reflection of sound at the walls. Reverb will make the sound be perceived as if it were in a large hall. You can try the reverb effect in your bathroom or garage or sport halls by shouting loud some words. You’ll hear the words reflected from the walls. The biggest problem in using the reverb effect is the correct setting of the (wall) delays such that the sound is realistic and doesn’t sound like music playing in a tin can or has overloaded feedback which destroys any illusion of playing in a big hall. To help you obtain realistic reverb effects, you should decide first how long the reverb should take place until it is not loud enough to be registered by your ears. This is be done by varying the reverb time "t". To simulate small halls, use 200ms. To simulate large halls, use 1000ms. Clearly, the walls of such a hall aren’t far away, so you should define its set- ting be given every wall its delay time. However, if the wall is to far away for the reverb time, you won’t hear the reverb, so the nearest wall will be best at "t/4" delay and the farthest at "t/2". You can try other distances as well, but it won’t sound very realistic. The walls shouldn’t stand to close to each other and not in a multiple integer distance to each other ( so avoid wall like: 200.0 and 202.0, or some- thing like 100.0 and 200.0 ). Since audience halls do have a lot of walls, we will start designing one beginning with one wall: play file.xxx reverb 1.0 600.0 180.0 One wall more: play file.xxx reverb 1.0 600.0 180.0 200.0 Next two walls: play file.xxx reverb 1.0 600.0 180.0 200.0 220.0 240.0 Now, why not a futuristic hall with six walls: play file.xxx reverb 1.0 600.0 180.0 200.0 220.0 240.0 280.0 300.0 If you run out of machine power or memory, then stop as many applica- tions as possible (every interrupt will consume a lot of CPU time which for bigger halls is absolutely necessary). Phaser The phaser effect is like the flanger effect, but it uses a reverb instead of an echo and does phase shifting. You’ll hear the difference in the examples comparing both effects (simply change the effect name). The delay modulation can be sinusoidal or triangular, preferable is the later for multiple instruments. For single instrument sounds, the sinu- soidal phaser effect will give a sharper phasing effect. The decay shouldn’t be to close to 1.0 which will cause dramatic feedback. A good range is about 0.5 to 0.1 for the decay. We will take a parameter setting as for the flanger before (gain-out is lower since feedback can raise the output dramatically): play file.xxx phaser 0.8 0.74 3.0 0.4 0.5 -t The drunken loudspeaker system (now less alcohol): play file.xxx phaser 0.9 0.85 4.0 0.23 1.3 -s A popular sound of the sample is as follows: play file.xxx phaser 0.89 0.85 1.0 0.24 2.0 -t The sample sounds if ten springs are in your ears: play file.xxx phaser 0.6 0.66 3.0 0.6 2.0 -t Compander The compander effect allows the dynamic range of a signal to be com- pressed or expanded. For most situations, the attack time (response to the music getting louder) should be shorter than the decay time because our ears are more sensitive to suddenly loud music than to suddenly soft music. For example, suppose you are listening to Strauss’ "Also Sprach Zarathustra" in a noisy environment such as a car. If you turn up the volume enough to hear the soft passages over the road noise, the loud sections will be too loud. You could try this: play file.xxx compand 0.3,1 -90,-90,-70,-70,-60,-20,0,0 -5 0 0.2 The transfer function ("-90,...") says that very soft sounds between -90 and -70 decibels (-90 is about the limit of 16-bit encoding) will remain unchanged. That keeps the compander from boosting the volume on "silent" passages such as between movements. However, sounds in the range -60 decibels to 0 decibels (maximum volume) will be boosted so that the 60-dB dynamic range of the original music will be compressed 3-to-1 into a 20-dB range, which is wide enough to enjoy the music but narrow enough to get around the road noise. The -5 dB output gain is needed to avoid clipping (the number is inexact, and was derived by experimentation). The 0 for the initial volume will work fine for a clip that starts with a bit of silence, and the delay of 0.2 has the effect of causing the compander to react a bit more quickly to sudden volume changes. Changing the Rate of Playback You can use stretch to change the rate of playback of an audio sample while preserving the pitch. For example to play at 1/2 the speed: play file.wav stretch 2 To play a file at twice the speed: play file.wav stretch .5 Other related options are "speed" to change the speed of play (and changing the pitch accordingly), and pitch, to alter the pitch of a sample. For example to speed a sample so it plays in 1/2 the time (for those Mickey Mouse voices): play file.wav speed 2 To raise the pitch of a sample 1 while note (100 cents): play file.wav pitch 100 Reducing noise in a recording First find a period of silence in your recording, such as the beginning or end of a piece. If the first 1.5 seconds of the recording are silent, do sox file.wav -t nul /dev/null trim 0 1.5 noiseprof /tmp/profile Next, use the noisered effect to actually reduce the noise: play file.wav noisered /tmp/profile Other effects (copy, rate, avg, stat, vibro, lowp, highp, band, reverb) The other effects are simple to use. However, an "easy to use manual" should be given here. More effects (to do !) There are a lot of effects around like noise gates, compressors, waw- waw, stereo effects and so on. They should be implemented, making SoX more useful in sound mixing techniques coming together with a great variety of different sound effects. Combining effects by using them in parallel or serially on different channels needs some easy mechanism which is stable for use in real- time. Really missing are the the changing of the parameters and start- ing/stopping of effects while playing samples in real-time! Good luck and have fun with all the effects! Juergen Mueller (jmueller@uia.ua.ac.be)SEE ALSO sox(1), play(1), rec(1)AUTHOR Juergen Mueller (jmueller@uia.ua.ac.be) Updates by Anonymous. December 11, 2001 SoX(1)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -