⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rbf.m

📁 rbf实现函数逼近
💻 M
字号:
clear all
clc
inputNums=3; %输入层节点
outputNums=3; %输出层节点
hideNums=10; %隐层节点数
maxcount=20000; %最大迭代次数
samplenum=3; %一个计数器,无意义
precision=0.001; %预设精度
yyy=1.3; %yyy是帮助网络加速走出平坦区 

alpha=0.01; %学习率设定值
a=0.5; %BP优化算法的一个设定值,对上组训练的调整值按比例修改
error=zeros(1,maxcount+1); %error数组初始化;目的是预分配内存空间
errorp=zeros(1,samplenum); %同上

v=rand(inputNums,hideNums); %3*10;v初始化为一个3*10的随机归一矩阵; v表输入层到隐层的权值
deltv=zeros(inputNums,hideNums); %3*10;内存空间预分配
dv=zeros(inputNums,hideNums); %3*10; 

w=rand(hideNums,outputNums); %10*3;同V
deltw=zeros(hideNums,outputNums);%10*3
dw=zeros(hideNums,outputNums); %10*3

samplelist=[0.1323,0.323,-0.132;0.321,0.2434,0.456;-0.6546,-0.3242,0.3255]; %3*3;指定输入值3*3(实为3个向量)
expectlist=[0.5435,0.422,-0.642;0.1,0.562,0.5675;-0.6464,-0.756,0.11]; %3*3;期望输出值3*3(实为3个向量),有导师的监督学习
count=1;
while (count<=maxcount) %结束条件1迭代20000次
c=1;
while (c<=samplenum)
for k=1:outputNums 
d(k)=expectlist(c,k); %获得期望输出的向量,d(1:3)表示一个期望向量内 的值
end

for i=1:inputNums
x(i)=samplelist(c,i); %获得输入的向量(数据),x(1:3)表一个训练向量
end

%Forward();
for j=1:hideNums
net=0.0;
for i=1:inputNums
net=net+x(i)*v(i,j);%输入层到隐层的加权和∑X(i)V(i) 
end
y(j)=1/(1+exp(-net)); %输出层处理f(x)=1/(1+exp(-x))单极性sigmiod函数
end
for k=1:outputNums
net=0.0;
for j=1:hideNums
net=net+y(j)*w(j,k);
end
if count>=2&&error(count)-error(count+1)<=0.0001
o(k)=1/(1+exp(-net)/yyy); %平坦区加大学习率
else o(k)=1/(1+exp(-net)); %同上
end
end

%BpError(c)反馈/修改;
errortmp=0.0;
for k=1:outputNums
errortmp=errortmp+(d(k)-o(k))^2; %第一组训练后的误差计算
end
errorp(c)=0.5*errortmp; %误差E=∑(d(k)-o(k))^2 * 1/2 
%end

%Backward();
for k=1:outputNums
yitao(k)=(d(k)-o(k))*o(k)*(1-o(k)); %输入层误差偏导 
end
for j=1:hideNums
tem=0.0;
for k=1:outputNums
tem=tem+yitao(k)*w(j,k); %为了求隐层偏导,而计算的∑
end
yitay(j)=tem*y(j)*(1-y(j)); %隐层偏导 
end

%调整各层权值
for j=1:hideNums
for k=1:outputNums
deltw(j,k)=alpha*yitao(k)*y(j); %权值w的调整量deltw(已乘学习率)
w(j,k)=w(j,k)+deltw(j,k)+a*dw(j,k);%权值调整,这里的dw=dletw(t-1),实际是对BP算法的一个
dw(j,k)=deltw(j,k); %改进措施--增加动量项目的是提高训练速度 
end 
end
for i=1:inputNums
for j=1:hideNums
deltv(i,j)=alpha*yitay(j)*x(i); %同上deltw
v(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j); 
dv(i,j)=deltv(i,j);
end
end
c=c+1;
end%第二个while结束;表示一次BP训练结束

double tmp;
tmp=0.0;
for i=1:samplenum
tmp=tmp+errorp(i)*errorp(i);%误差求和
end
tmp=tmp/c;
error(count)=sqrt(tmp);%误差求均方根,即精度

if (error(count)<precision)%另一个结束条件
break;
end
count=count+1;%训练次数加1
end%第一个while结束
error(maxcount+1)=error(maxcount);
p=1:count;
pp=p/50;
plot(pp,error(p),'-'); %显示误差 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -