⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 filter.c

📁 自己移植的linux下的流媒体播放器原代码,支持mms协议,支持ftp和http协议.
💻 C
字号:
/*=============================================================================//	//  This software has been released under the terms of the GNU General Public//  license. See http://www.gnu.org/copyleft/gpl.html for details.////  Copyright 2001 Anders Johansson ajh@atri.curtin.edu.au////=============================================================================*//* Design and implementation of different types of digital filters*/#include <string.h>#include <math.h>#include "dsp.h"/*******************************************************************************  FIR filter implementations******************************************************************************//* C implementation of FIR filter y=w*x   n number of filter taps, where mod(n,4)==0   w filter taps   x input signal must be a circular buffer which is indexed backwards */inline _ftype_t af_filter_fir(register unsigned int n, _ftype_t* w, _ftype_t* x){  register _ftype_t y; // Output  y = 0.0;   do{    n--;    y+=w[n]*x[n];  }while(n != 0);  return y;}/* C implementation of parallel FIR filter y(k)=w(k) * x(k) (where * denotes convolution)   n  number of filter taps, where mod(n,4)==0   d  number of filters   xi current index in xq   w  filter taps k by n big   x  input signal must be a circular buffers which are indexed backwards    y  output buffer   s  output buffer stride*/inline _ftype_t* af_filter_pfir(unsigned int n, unsigned int d, unsigned int xi, _ftype_t** w, _ftype_t** x, _ftype_t* y, unsigned int s){  register _ftype_t* xt = *x + xi;  register _ftype_t* wt = *w;  register int    nt = 2*n;  while(d-- > 0){    *y = af_filter_fir(n,wt,xt);    wt+=n;    xt+=nt;    y+=s;  }  return y;}/* Add new data to circular queue designed to be used with a parallel   FIR filter, with d filters. xq is the circular queue, in pointing   at the new samples, xi current index in xq and n the length of the   filter. xq must be n*2 by k big, s is the index for in.*/inline int af_filter_updatepq(unsigned int n, unsigned int d, unsigned int xi, _ftype_t** xq, _ftype_t* in, unsigned int s)  {  register _ftype_t* txq = *xq + xi;  register int nt = n*2;    while(d-- >0){    *txq= *(txq+n) = *in;    txq+=nt;    in+=s;  }  return (++xi)&(n-1);}/*******************************************************************************  FIR filter design******************************************************************************//* Design FIR filter using the Window method   n     filter length must be odd for HP and BS filters   w     buffer for the filter taps (must be n long)   fc    cutoff frequencies (1 for LP and HP, 2 for BP and BS)          0 < fc < 1 where 1 <=> Fs/2   flags window and filter type as defined in filter.h         variables are ored together: i.e. LP|HAMMING will give a 	 low pass filter designed using a hamming window     opt   beta constant used only when designing using kaiser windows      returns 0 if OK, -1 if fail*/int af_filter_design_fir(unsigned int n, _ftype_t* w, _ftype_t* fc, unsigned int flags, _ftype_t opt){  unsigned int	o   = n & 1;          	// Indicator for odd filter length  unsigned int	end = ((n + 1) >> 1) - o;       // Loop end  unsigned int	i;			// Loop index  _ftype_t k1 = 2 * M_PI;		// 2*pi*fc1  _ftype_t k2 = 0.5 * (_ftype_t)(1 - o);// Constant used if the filter has even length  _ftype_t k3;				// 2*pi*fc2 Constant used in BP and BS design  _ftype_t g  = 0.0;     		// Gain  _ftype_t t1,t2,t3;     		// Temporary variables  _ftype_t fc1,fc2;			// Cutoff frequencies  // Sanity check  if(!w || (n == 0)) return -1;  // Get window coefficients  switch(flags & WINDOW_MASK){  case(BOXCAR):    af_window_boxcar(n,w); break;  case(TRIANG):    af_window_triang(n,w); break;  case(HAMMING):    af_window_hamming(n,w); break;  case(HANNING):    af_window_hanning(n,w); break;  case(BLACKMAN):    af_window_blackman(n,w); break;  case(FLATTOP):    af_window_flattop(n,w); break;  case(KAISER):    af_window_kaiser(n,w,opt); break;  default:    return -1;	  }  if(flags & (LP | HP)){     fc1=*fc;    // Cutoff frequency must be < 0.5 where 0.5 <=> Fs/2    fc1 = ((fc1 <= 1.0) && (fc1 > 0.0)) ? fc1/2 : 0.25;    k1 *= fc1;    if(flags & LP){ // Low pass filter      // If the filter length is odd, there is one point which is exactly      // in the middle. The value at this point is 2*fCutoff*sin(x)/x,       // where x is zero. To make sure nothing strange happens, we set this      // value separately.      if (o){	w[end] = fc1 * w[end] * 2.0;	g=w[end];      }      // Create filter      for (i=0 ; i<end ; i++){	t1 = (_ftype_t)(i+1) - k2;	w[end-i-1] = w[n-end+i] = w[end-i-1] * sin(k1 * t1)/(M_PI * t1); // Sinc	g += 2*w[end-i-1]; // Total gain in filter      }    }    else{ // High pass filter      if (!o) // High pass filters must have odd length	return -1;      w[end] = 1.0 - (fc1 * w[end] * 2.0);      g= w[end];      // Create filter      for (i=0 ; i<end ; i++){	t1 = (_ftype_t)(i+1);	w[end-i-1] = w[n-end+i] = -1 * w[end-i-1] * sin(k1 * t1)/(M_PI * t1); // Sinc	g += ((i&1) ? (2*w[end-i-1]) : (-2*w[end-i-1])); // Total gain in filter      }    }  }  if(flags & (BP | BS)){    fc1=fc[0];    fc2=fc[1];    // Cutoff frequencies must be < 1.0 where 1.0 <=> Fs/2    fc1 = ((fc1 <= 1.0) && (fc1 > 0.0)) ? fc1/2 : 0.25;    fc2 = ((fc2 <= 1.0) && (fc2 > 0.0)) ? fc2/2 : 0.25;    k3  = k1 * fc2; // 2*pi*fc2    k1 *= fc1;      // 2*pi*fc1    if(flags & BP){ // Band pass      // Calculate center tap      if (o){	g=w[end]*(fc1+fc2);	w[end] = (fc2 - fc1) * w[end] * 2.0;      }      // Create filter      for (i=0 ; i<end ; i++){	t1 = (_ftype_t)(i+1) - k2;	t2 = sin(k3 * t1)/(M_PI * t1); // Sinc fc2	t3 = sin(k1 * t1)/(M_PI * t1); // Sinc fc1	g += w[end-i-1] * (t3 + t2);   // Total gain in filter	w[end-i-1] = w[n-end+i] = w[end-i-1] * (t2 - t3);       }    }          else{ // Band stop      if (!o) // Band stop filters must have odd length	return -1;      w[end] = 1.0 - (fc2 - fc1) * w[end] * 2.0;      g= w[end];      // Create filter      for (i=0 ; i<end ; i++){	t1 = (_ftype_t)(i+1);	t2 = sin(k1 * t1)/(M_PI * t1); // Sinc fc1	t3 = sin(k3 * t1)/(M_PI * t1); // Sinc fc2	w[end-i-1] = w[n-end+i] = w[end-i-1] * (t2 - t3); 	g += 2*w[end-i-1]; // Total gain in filter      }    }  }  // Normalize gain  g=1/g;  for (i=0; i<n; i++)     w[i] *= g;    return 0;}/* Design polyphase FIR filter from prototype filter   n     length of prototype filter   k     number of polyphase components   w     prototype filter taps   pw    Parallel FIR filter    g     Filter gain   flags FWD forward indexing         REW reverse indexing	 ODD multiply every 2nd filter tap by -1 => HP filter   returns 0 if OK, -1 if fail*/int af_filter_design_pfir(unsigned int n, unsigned int k, _ftype_t* w, _ftype_t** pw, _ftype_t g, unsigned int flags){  int l = (int)n/k;	// Length of individual FIR filters  int i;     	// Counters  int j;  _ftype_t t;	// g * w[i]    // Sanity check  if(l<1 || k<1 || !w || !pw)    return -1;  // Do the stuff  if(flags&REW){    for(j=l-1;j>-1;j--){//Columns      for(i=0;i<(int)k;i++){//Rows	t=g *  *w++;	pw[i][j]=t * ((flags & ODD) ? ((j & 1) ? -1 : 1) : 1);      }    }  }  else{    for(j=0;j<l;j++){//Columns      for(i=0;i<(int)k;i++){//Rows	t=g *  *w++;	pw[i][j]=t * ((flags & ODD) ? ((j & 1) ? 1 : -1) : 1);      }    }  }  return -1;}/*******************************************************************************  IIR filter design******************************************************************************//* Helper functions for the bilinear transform *//* Pre-warp the coefficients of a numerator or denominator.   Note that a0 is assumed to be 1, so there is no wrapping   of it.  */void af_filter_prewarp(_ftype_t* a, _ftype_t fc, _ftype_t fs){  _ftype_t wp;  wp = 2.0 * fs * tan(M_PI * fc / fs);  a[2] = a[2]/(wp * wp);  a[1] = a[1]/wp;}/* Transform the numerator and denominator coefficients of s-domain   biquad section into corresponding z-domain coefficients.      The transfer function for z-domain is:          1 + alpha1 * z^(-1) + alpha2 * z^(-2)   H(z) = -------------------------------------          1 + beta1 * z^(-1) + beta2 * z^(-2)   Store the 4 IIR coefficients in array pointed by coef in following   order:   beta1, beta2    (denominator)   alpha1, alpha2  (numerator)      Arguments:   a       - s-domain numerator coefficients   b       - s-domain denominator coefficients   k 	   - filter gain factor. Initially set to 1 and modified by each             biquad section in such a way, as to make it the             coefficient by which to multiply the overall filter gain             in order to achieve a desired overall filter gain,             specified in initial value of k.     fs 	   - sampling rate (Hz)   coef    - array of z-domain coefficients to be filled in.    Return: On return, set coef z-domain coefficients and k to the gain   required to maintain overall gain = 1.0;*/void af_filter_bilinear(_ftype_t* a, _ftype_t* b, _ftype_t* k, _ftype_t fs, _ftype_t *coef){  _ftype_t ad, bd;  /* alpha (Numerator in s-domain) */  ad = 4. * a[2] * fs * fs + 2. * a[1] * fs + a[0];  /* beta (Denominator in s-domain) */  bd = 4. * b[2] * fs * fs + 2. * b[1] * fs + b[0];  /* Update gain constant for this section */  *k *= ad/bd;  /* Denominator */  *coef++ = (2. * b[0] - 8. * b[2] * fs * fs)/bd; /* beta1 */  *coef++ = (4. * b[2] * fs * fs - 2. * b[1] * fs + b[0])/bd; /* beta2 */  /* Numerator */  *coef++ = (2. * a[0] - 8. * a[2] * fs * fs)/ad; /* alpha1 */  *coef   = (4. * a[2] * fs * fs - 2. * a[1] * fs + a[0])/ad;   /* alpha2 */}/* IIR filter design using bilinear transform and prewarp. Transforms   2nd order s domain analog filter into a digital IIR biquad link. To   create a filter fill in a, b, Q and fs and make space for coef and k.      Example Butterworth design:    Below are Butterworth polynomials, arranged as a series of 2nd   order sections:   Note: n is filter order.      n  Polynomials   -------------------------------------------------------------------   2  s^2 + 1.4142s + 1   4  (s^2 + 0.765367s + 1) * (s^2 + 1.847759s + 1)   6  (s^2 + 0.5176387s + 1) * (s^2 + 1.414214 + 1) * (s^2 + 1.931852s + 1)      For n=4 we have following equation for the filter transfer function:                       1                              1   T(s) = --------------------------- * ----------------------------          s^2 + (1/Q) * 0.765367s + 1   s^2 + (1/Q) * 1.847759s + 1      The filter consists of two 2nd order sections since highest s power   is 2.  Now we can take the coefficients, or the numbers by which s   is multiplied and plug them into a standard formula to be used by   bilinear transform.   Our standard form for each 2nd order section is:          a2 * s^2 + a1 * s + a0   H(s) = ----------------------          b2 * s^2 + b1 * s + b0   Note that Butterworth numerator is 1 for all filter sections, which   means s^2 = 0 and s^1 = 0   Let's convert standard Butterworth polynomials into this form:             0 + 0 + 1                  0 + 0 + 1   --------------------------- * --------------------------   1 + ((1/Q) * 0.765367) + 1   1 + ((1/Q) * 1.847759) + 1   Section 1:   a2 = 0; a1 = 0; a0 = 1;   b2 = 1; b1 = 0.765367; b0 = 1;   Section 2:   a2 = 0; a1 = 0; a0 = 1;   b2 = 1; b1 = 1.847759; b0 = 1;   Q is filter quality factor or resonance, in the range of 1 to   1000. The overall filter Q is a product of all 2nd order stages.   For example, the 6th order filter (3 stages, or biquads) with   individual Q of 2 will have filter Q = 2 * 2 * 2 = 8.   Arguments:   a       - s-domain numerator coefficients, a[1] is always assumed to be 1.0   b       - s-domain denominator coefficients   Q	   - Q value for the filter   k 	   - filter gain factor. Initially set to 1 and modified by each             biquad section in such a way, as to make it the             coefficient by which to multiply the overall filter gain             in order to achieve a desired overall filter gain,             specified in initial value of k.     fs 	   - sampling rate (Hz)   coef    - array of z-domain coefficients to be filled in.   Note: Upon return from each call, the k argument will be set to a   value, by which to multiply our actual signal in order for the gain   to be one. On second call to szxform() we provide k that was   changed by the previous section. During actual audio filtering   k can be used for gain compensation.   return -1 if fail 0 if success.*/int af_filter_szxform(_ftype_t* a, _ftype_t* b, _ftype_t Q, _ftype_t fc, _ftype_t fs, _ftype_t *k, _ftype_t *coef){  _ftype_t at[3];  _ftype_t bt[3];  if(!a || !b || !k || !coef || (Q>1000.0 || Q< 1.0))     return -1;  memcpy(at,a,3*sizeof(_ftype_t));  memcpy(bt,b,3*sizeof(_ftype_t));  bt[1]/=Q;  /* Calculate a and b and overwrite the original values */  af_filter_prewarp(at, fc, fs);  af_filter_prewarp(bt, fc, fs);  /* Execute bilinear transform */  af_filter_bilinear(at, bt, k, fs, coef);  return 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -